
IBR-DTN: An Efficient Implementation for Embedded
Systems

Michael Doering, Sven Lahde, Johannes Morgenroth, and Lars Wolf
Institute of Operating Systems and Computer Networks, Technische Universität Braunschweig

Braunschweig, Niedersachsen, Germany
{doering|lahde|morgenro|wolf}@ibr.cs.tu-bs.de

ABSTRACT
In our demonstration we present an implementation of DTN
for embedded systems and demonstrate how a WLAN ac-
cess point can be turned into a stand-alone DTN-node for
mobile applications. The modular software design of “IBR-
DTN” is centered on the efficient use of resources and inter-
operability with the DTN2 reference implementation. Our
modules comprise a DTN Core, Bundle Router, Persistent
Storage and a Convergence Layer Manager. IBR-DTN is
work in progress, but the comparison of the features and
performance to DTN2 is already very promising. Finally,
we present a practical evaluation in a mobile scenario in
which a vehicle mounted node passes a stationary node.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Design, Performance

Keywords
Delay Tolerant Networks, Embedded Systems, IEEE 802.11,
DTN2, OpenWRT, IBR-DTN

1. INTRODUCTION
The EMMA [2] project deals with environmental mon-

itoring based on public transportation vehicles and delay
tolerant networking. During the development, we realized
that a commercially successful system requires an inexpen-
sive embedded platform for the computing and communica-
tion of sensor data. Since the design and implementation of
a custom embedded system is rather time consuming and a
low volume production is always expensive, we decided to
enhance the firmware of off-the-shelf WLAN access points
with DTN-capability. These consumer devices offer many

Copyright is held by the author/owner(s).
CHANTS’08, September 15, 2008, San Francisco, California, USA.
ACM 978-1-60558-186-6/08/09.

features, e.g. network address translation, port forward-
ing and packet filtering. Moreover, various network services
like DHCP, DNS, NTP, HTTP and UPnP are implemented.
Current devices are equipped with integrated IEEE 802.11
access points and USB 2.0 host interfaces which allow re-
mote access e.g. to storage devices, printers and webcams.
The majority of these multifunctional devices (termed e.g.
“wireless routers” or “multimedia routers” by product mar-
keting) are running an embedded version of Linux, although
it is normally not accessible to the user and well hidden be-
hind a web-based configuration interface. Hardware- and
manufacturer-specific modifications of the Linux kernel are
usually not documented and due to the lack of common
standards it is virtually impossible to implement portable
software packages. This problem is addressed by the Open-
Wrt [5] project, maintaining a well defined, manufacturer
and model independent Linux-based firmware, build envi-
ronment, and a software package management system. It is
not limited to consumer devices, but also runs on standard
PCs as well as on professional networking equipment.

Currently there are several DTN implementations avail-
able. DTN2 by the Delay Tolerant Networking Research
Group (DTNRG) is mainly implemented to demonstrate
basic functionality and therefore does not operate very ef-
ficiently. Another Linux implementation is ION. DTNLite
[6] is designed for sensor networks running tinyOS, but does
not allow for using common applications and programming
languages. DASM is an implementation for Symbian smart-
phones [3]. In contrast to existing realizations, the idea be-
hind IBR-DTN is to develop a powerful and efficient im-
plementation that runs on embedded devices as well as on
standard Linux systems. Except for ION and IBR-DTN,
none of the implementations support version 6 of the DTN
Bundle protocol. However, ION lacks important features
like e.g. discovery.

In this paper, we present first results of our ongoing work
of implementing IBR-DTN, a delay tolerant networking pack-
age for networked consumer devices. The evaluation shows
promising performance results which are compared to the
DTN2 reference implementation.

2. SYSTEM ARCHITECTURE
Our aim is to develop a light-weight implementation of

delay tolerant networking which is interoperable with the
DTN2 reference implementation [1], but is lean enough to
run on common WLAN APs. These APs are to be used
as compact “plug-and-play”DTN-Modules for vehicular and
stationary applications, e.g. in (public) transportation and

117

Figure 1: FON2200 with additional Storage

environmental monitoring. This way, it is possible to avoid
relatively large and expensive computers in many scenarios.

The main resource constraint on mid-range APs is RAM.
Usually only 5-6MB of a total of 16MB remain available
for additional processes. Since IBR-DTN shall co-exist with
the usual AP features (routing, firewalling, 802.11 encryp-
tion, etc.), it must not consume more than 4MB RAM. For
this reason, DTN2 - which uses various libraries and occu-
pies roughly 40MB of RAM - is inappropriate for our pur-
poses. Further the computing power of an AP (typically
with a 200 MHz MIPS CPU) is much lower compared to a
regular computer. Therefore the efficiency of data manip-
ulation algorithms requires more attention for an embed-
ded implementation. A solution for both constraints is to
use self-implemented, efficient code and data structures in-
stead of using libraries whenever reasonable. An exception
is uClibc(++) [8], a lean library optimized for embedded
systems. uClibc and uClibc++ are the only libraries used
by our implementation.

IBR-DTN is currently developed on a Mikrotik Router-
board 532, which features a serial console for debugging.
However IBR-DTN was successfully tested on various low-
cost APs e.g. Netgear WGT634U, Linksys WRT54G3G and
even on an ultra low budget FON FON2200. APs with USB
host adapters are most suitable, since external mass storage
like USB-flashdrives offer large capacity for bundle storage.
But even APs without USB host can be modified to feature
additional flash memory, e.g. by attaching an SD-Card to
unused GPIO-pins of the CPU. Figure 1 shows a FON2200
with an 2GB persistent storage modification. This system
was successfully tested with IBR-DTN and can be run on
battery.

As shown in figure 2, IBR-DTN comprises three main
modules derived from the main functions defined in RFC5050
[7], which provide basic services to the DTN core module:

Bundle Router: returns a schedule for a given bundle.
Currently static routing is implemented, however the Bundle
Router is designed to allow for modular routing plug-ins.

Bundle Storage: management, storage and retrieval of
bundles. Additionally, it generates notifications whenever it
deletes an expired bundle so that a status report can be sent
if required.

Convergence Layer: provides an adapter for transport
mechanisms. Currently an UDP convergence layer is im-
plemented. For the EMMA project we also implemented
a special convergence layer for environmental monitoring,
which features a broadcast discovery mechanism for wire-
less networks. Different convergence layers are attached to
and managed by the MultiplexConvergenceLayer.

The DTN core module implements the DTN protocol

Figure 2: IBR-DTN Software Architecture

DTN2 IBR-DTN

The Basic Bundle Protocol X X

Self Describing Numeric Values X X

Endpoint Identifiers (see below) X X

Bundle expirations (based on timers) X X

Registrations (with expiration timers) X -

Persistent storage of bundles X -

Bundle fragmentation (reactive) X -

Bundle fragment reassembly X X

Custody Transfer X X

Bundle Status Reports:

Received X X

Forwarded X X

Delivered X X

Deleted X X

Acknowledged by Application - -

Custody Acceptance X X

Extension blocks X X

Bundle Security blocks X -

Proactive Fragmentation - X

Table 1: RFC5050 Features: DTN2 vs. IBR-DTN

logic and provides an interface to applications or “endpoint
modules”. An exemplary application collecting environmen-
tal data is the Measurement Worker.

3. EVALUATION
IBR-DTN is evaluated quantitatively and qualitatively to

analyze performance and efficiency. Table 1 compares the
features and table 2 compares the consumption of memory
and storage resources of DTN2 version 2.5 and IBR-DTN.
It is obvious that the implementation of IBR-DTN is more
efficient. Not only the slim application itself, but also the
lower consumption of memory makes IBR-DTN suitable to
run on embedded devices with limited resources. In the next
step, we compared the performance of the DTN reference
implementation and IBR-DTN in a testbed. The intention
was to analyze the throughput of both implementations that
may be reached in a best-case scenario. For eliminating
possible interferences on the wireless channel, we setup two
identical notebooks with a direct Ethernet connection. The

DTN2 IBR-DTN

Size of the daemon application 21.9 MB 114 kB

Size of the attached libraries 7.1 MB 605 kB

RAM usage (swappable VZS) 41.7 MB 3.4 MB

RAM usage (non-swappable RSS) 4.7 MB 1.7 MB

Table 2: RAM usage: DTN2 vs. IBR-DTN

118

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

th
ro

ug
hp

ut
 (k

bi
t/s

)

time (seconds)

DTN2 Referenceimplementation
IBR DTN

Figure 3: DTN2 and IBR-DTN Throughput

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100
 0

 2

 4

 6

 8

 10

 12

di
st

an
ce

 (m
et

er
)

th
ro

ug
hp

ut
 (k

b/
s)

time (seconds)

distance between APs
transmitted data

radio signal strength

Figure 4: Real World Results

results of this measurement run are depicted in figure 3. It
is obvious that the throughput of IBR-DTN is nearly twice
of DTN2’s throughput. During a run of 60 s, IBR-DTN
reached an average throughput of 252 kbit/s, while DTN2
was only able to deliver bundles at a speed of 117 kbit/s.

Besides, we also did real-world measurements to find out
how our implementation performs in the wild. For this,
we run IBR-DTN on a Mikrotik Routerboard RB 532 with
802.11a/b/g Wireless Mini-PCI Cards (R52H, Atheros AR-
5414 chipset). The WLAN card was configured to run in
802.11g mode. The urban traffic scenario we analyzed was a
vehicle driving by an building with an indoor WLAN access
point at an average speed of approximately 20 km/h. The
vehicular node as well as the access point were running IBR-
DTN on top of the OpenWrt operating system. The results
of these measurement runs are shown in figure 4. It can be
seen that the implementation works as intended and is well
suited for vehicular DTNs.

4. DEMONSTRATION SETUP
We demonstrate IBR-DTN on embedded devices and show

that it is compatible to DTN2. The demonstration setup
comprises four mobile DTN nodes: one laptop running DTN2
and one laptop running IBR-DTN. The other devices are
embedded WLAN routers running IBR-DTN on OpenWrt.
The communication between the mobile devices is based on
802.11b/g WLAN. Another laptop is used to emulate the
mobility of the mobile devices via a wired LAN.

In the demonstration scenario mobile DTN nodes collect

sensor data while virtually moving in a terrain. Measured
data sets are color values on the ground of the terrain an-
notated with the respective positions. This data is spread
to all other participants in the DTN via an UDP conver-
gence layer. For each node, the color values being learned
from own measurements or incoming DTN bundles are dis-
played. The nodes’ movement is emulated by switching the
wireless interfaces on and off remotely. A graphical user
interface gives the opportunity to choose between different
movement scenarios, the size of the data sets and the interval
of measurements. In addition, the user interface visualizes
the bundle exchange process and the content of each bundle
cache. Conference participants are able to interact with the
demo in order to change the application characteristics and
the time nodes are connected in different scenarios.

5. SUMMARY
In this paper we present IBR-DTN, our implementation of

the DTN bundle protocol. One of its main advantages is the
support of various hardware platforms from smartphones up
to PCs or Notebooks. This was reached by using OpenWrt
as a basis for the implementation. Moreover, IBR-DTN op-
erates very efficiently and consumes few memory resources.
This is an important fact when running the implementation
on access points or mobile phones with strong resource con-
straints. Further advantages of IBR-DTN are the support of
the latest bundle protocol version and interoperability with
DTN2.

The work on IBR-DTN is still ongoing. At the moment
we are porting IBR-DTN to the OpenMoko platform, to
support open source smartphones like the NEO FreeRunner
featuring GSM, Bluetooth and WLAN [4]. Moreover, we
plan to realize a large real-world DTN testbed.

6. REFERENCES
[1] Delay Tolerant Networking Research Group. DTN

Reference Implementation, August 2006.
http://www.dtnrg.org/docs/code/.

[2] S. Lahde, M. Doering, W.-B. Pöttner, G. Lammert,
and L. Wolf. A practical analysis of communication
characteristics for mobile and distributed pollution
measurements on the road: Research articles. Wireless

Communications and Mobile Computing,
7(10):1209–1218, 2007.

[3] O. Mukhtar and J. Ott. Backup and bypass:
introducing dtn-based ad-hoc networking to mobile
phones. In REALMAN ’06: Proceedings of the 2nd

international workshop on Multi-hop ad hoc networks:

from theory to reality, pages 107–109, New York, NY,
USA, 2006. ACM.

[4] Openmoko Community. The Openmoko Project
Homepage, 2008. http://www.openmoko.org/.

[5] OpenWRT Community. The OpenWRT Project
Homepage, 2008. http://www.openwrt.org/.

[6] R. Patra and S. Nedevschi. Dtnlite: A reliable data
transfer architecture for sensor networks. Technical
report cs294–1 course project report, Berkeley, 2003.

[7] K. Scott. Bundle Protocol Specification. RFC 5050,
Nov. 2007.

[8] uClibc Community. The uClibc Project Homepage,
2008. http://www.uclibc.org/.

119

