
A Demonstration of the MeshTest Wireless Testbed for
Delay-Tolerant Network Research

Brenton D. Walker Ian D. Vo Matthew Beecher Matthew Seligman
Laboratory for Telecommunications Sciences

College Park, MD, USA
brenton@ltsnet.net idv2101@columbia.edu beechema@iastate.edu seligman@ltsnet.net

ABSTRACT
MeshTest is a laboratory-based multi-hop wireless testbed
that can subject real wireless nodes running real DTN imple-
mentations to reproducible mobile scenarios. It uses shielded
enclosures and an RF matrix switch to dynamically control
the attenuation experienced between pairs of nodes. The
testbed is an ideal platform for DTN testing, offering con-
venient experimental control and data management.

We have installed the DTN2 Reference Implementation on
the testbed nodes, and and have been using it to run exper-
iments. Our current experimental scenarios are similar to
the well known Data MULE and Message Ferry models, but
a large variety of other experimental scenarios are possible.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication; C.4 [Performance of Systems]: Measure-
ment techniques

General Terms
Design, Experimentation, Measurement

1. PURPOSE OF THE DEMO
Delay Tolerant Networks (DTNs) are a class of networks

in which a contemporaneous end-to-end path from source to
destination generally does not exist. Such networks often
use a store-carry-forward communication model which relies
on the mobility of nodes to transfer data between geograph-
ically separated nodes. DTN researchers have relied heavily
on simulation for evaluation, due to the difficulty and ex-
pense of running live experiments with real nodes and real
DTN implementations.

Our goal is to demonstrate the MeshTest testbed in oper-
ation, and show that it is an ideal platform for DTN exper-
imentation, development and debugging. We have installed
the DTN2 Reference Implementation on the testbed nodes
and have run a variety of experiments. A wide variety of

Copyright is held by the author/owner(s).
CHANTS’08, September 15, 2008, San Francisco, California, USA.
ACM 978-1-60558-186-6/08/09.

Figure 1: Assembly and connection of the shielded
enclosures and RF switch.

other experiments are possible, however. It is also possible
to place other wireless devices, including most laptops, in-
side the shielded enclosures to test different types of DTN
hardware and software. We hope that other workshop par-
ticipants have DTN implementations that they would be
willing to try on the testbed.

2. TESTBED DESCRIPTION
MeshTest consists of a rack of computers in shielded en-

closures, an RF matrix switch, and a server that provides
experiment control, as depicted in Figure 1. The RF from
each computer’s WiFi card is cabled through the enclosures
and into the matrix switch of programmable attenuators.

105



Digital Attenuators
Splitters

"Outputs"

Splitters

"Inputs"

Figure 2: RF matrix switch diagram, showing n up-
per I/O ports, b lower I/O ports, and nb Ethernet-
controlled digital attenuators with ranges 0-127 dB

The enclosures provide roughly 80dB of isolation, prevent-
ing inadvertent cross-talk.

While any device, from cellular telephones to software-
defined radios, may be placed into the enclosures, the default
configuration involves 802.11-based computers. Through a
partnership with Rutgers, nodes and software from the OR-
BIT testbed [3] have been acquired.

The matrix switch allows us to control the attenuation
experienced between the devices. Figure 2 shows the logical
construction of an n × b switch. It has n inputs, each of
which is split b ways and fed through a digital attenuator
attenuators to one of b buses. In our current switch there are
16 inputs and 4 busses, for a total of 64 attenuators. Each
bus has a direct, unattenuated, external connection which
we do not currently use, except for testing and calibration.

Note that the RF switch only simulates inter-node channel
loss, and not propagation times. A practical evaluation of
the testbed’s RF environment can be found in [5].

3. TESTBED CONTROL SOFTWARE
The MeshTest testbed uses ORBIT’s testbed management

software to control the nodes. The additional piece neces-
sary to make MeshTest work is software to map physical
arrangements of nodes to the appropriate attenuator set-
tings, and upload those settings to the switch in real-time
during an experiment.

The RF matrix switch can be accessed via a TCP socket.
Further, attenuation levels can only be set one at a time.
Entering these settings by hand becomes unwieldy when
dynamic simulations involving multiple nodes need to be
conducted in real time.

The issues the control software needs to address are:

• Keep track of the locations and movements of each indi-
vidual node

• Calculate the effective attenuation between two nodes
based on the physical scenario

• Generate and apply switch settings in real time

To solve these issues, we developed a Java Swing applica-
tion to provide a portable, graphical interface in which users
can place nodes onto a ”map”, represented by a default grid
of 1 by 1 kilometer sections. To facilitate a variety of sce-
narios, the scale of the map can be changed, with new grids
overlain to provide perspective of the changing scale. Addi-

tionally, each node can be given a trajectory, designated by
a series of target destinations. Nodes can travel at different
speeds (0-100km/h) between different pairs of destinations,
rest at a destination for a specified time, and toggle their
status (active/inactive).

As the simulation is run, users can view the wireless nodes
traveling along their trajectories in real time. Every 3 sec-
onds, a new inter-node distance matrix is generated based on
the current node arrangement, and a new path loss matrix,
L is computed by applying the free-space path loss equation
After the desired path loss matrix, L, is obtained, we com-
pute an approximate decomposition of the form A

T
A, where

A is a lower rank matrix containing the actual attenuator
settings to be applied to the switch. More mathematical
details can be found in [1].

Decomposition is achieved through simulated annealing.
The algorithm uses a probabilistic, state-based strategy that
allows for a quick approximation of a global minimum. Start-
ing with a base state, each step of the algorithm permutes
the state to a random ”neighbor” state, with probabilis-
tic preference given to states representing better approx-
imations. As the annealing progresses the range of each
step is decreased, eventually converging when the step range
reaches zero. By allowing the occasional move to a less op-
timal state, the algorithm can avoid getting trapped in local
minima.

4. DTN2 DESCRIPTION
All nodes are running version 2.5.1 of the DTN2 refer-

ence implementation, available from the DTNRG website
[2]. The default configuration settings are used, except for
routing and neighbor discovery. Static routing was used in
these experiments since each node had a predetermined role
as a source, sink, or intermediate router. For example, in the
Data MULE scenario, each source node, also referred to as a
sensor node, contained routes to the sink through each Data
MULE. For the Message Ferry scenario, routes are added to
allow sensors to send and receive from one another via the
message ferry.

The DTN2’s link discovery functionality is used to dy-
namically add newly available links and deactivate recently
disconnected links in its current routing table. The MULEs
and ferrys were configured to send discovery announcements
every second, and the sensors and APs were configured to
listen for announcements.

The DTN2 daemon uses the TCP convergence layer to
communicate. In theory, for scenarios with short contact
times such as Data MULEs or Message Ferries, UDP may
provide a more efficient transport service. An attempt to
use the UDP convergence layer was made, but we ran into
link discovery issues that we could not quickly resolve and
leave this as future work.

The DTN2 reference implementation includes a variety
of applications, such as dtnsend for sending bundles, and a
receive bundle application called dtnrecv, both of which we
used. Both applications process data asynchronously using
the local disk to stage data. For example, if dtnsend sends
a bundle, the bundle is placed in the node’s send queue and
dtnsend returns regardless of whether or not the bundle was
actually transmitted. Along with these applications, Perl
scripts are used to generate bundles at sensors and process
received bundles at sinks.

106



Figure 3: Node arrangement and mobility pattern
for the first two hours of the experiment. Nodes 1-7
are stationary sensors, node 9 is the AP, and nodes
11-12 are mobile data MULES. The red dots points
where a MULE changed direction.

5. EXPERIMENTAL SCENARIOS
5.1 Data MULE Scenario

We set up and ran experiments analogous to the Data
MULE model described in [4]. Specifically, we adopt the
three-tier architecture, including the assumptions made about
the functionality of each tier. This includes stationary ac-
cess points (AP) and sensors, and mobile data MULEs. The
key assumptions are:

• Each sensor is resource-constrained

• Date MULEs do not exchange data

• Mobility of Data MULEs is not coordinated

Each data MULE periodically sends out discovery an-
nouncements, and all nodes listen for these announcements.
When a node detects a MULE, it opens an opportunistic

link. All opportunistic links remain in the routing table until
dtnd is restarted, though they are marked as “Unavailable”
once the MULE is out of range.

5.2 Message Ferry Scenario
Experiments based on simplified versions of the Message

Ferry scenario [6] were designed and run on the MeshTest
testbed. Our experiments use stationary sensor nodes that
need to communicate with each other, but lack direct con-
nections. Mobile message ferries provide a store-carry-forward
service to facilitate communication. These scenarios con-
tained 8 sensor nodes, each set up in a different zone, where
a zone is a 1km x 1km grid square. Sensor nodes were set
to listen for discovery announcements produced by the two
message ferries. Sensor nodes were not set up to look for
or setup links directly to other sensor nodes. When a node
detected a ferry it opened an opportunistic link and added
the link to its routing table.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

50

100

150

200

250

300

350

400

450

500

550

time(seconds)

bu
ffe

r u
sa

ge
 (k

B)

Node 3
Node 4

Figure 4: Example of two nodes’ storage usage dur-
ing a Data MULE experiment.

Message ferries were initially placed in a random zone and
were set to move at a constant speed of 30 km/hr to an-
other randomly selected zone. Once ferries reach their tar-
get zone, they immediately select another random zone and
begin moving to their new destination. When a link was
created by a sensor node, ferries sent bundles destined to
the connected node and received bundles generated by the
sensor until either all bundles were transferred or the link
became unavailable due to message ferry movement. Desti-
nations for each bundle were selected at random.

5.3 Data Analysis
We have written perl scripts to collect and parse experi-

mental output for data analysis, though nothing precludes
a user from collecting and analyzing data in any particular
way. Figure 4 shows an example of results gathered from a
Data MULE experiment comparing two nodes’ storage us-
age. Other statistics we have examined include mean latency
and message success rate.

6. REFERENCES
[1] T. C. Clancy and B. D. Walker. Meshtest:

Laboratory-based wireless testbed for large topologies.
In IEEE TridentCom 2007, pages 1–6, 2007.

[2] DTN Research Group. http://www.dtnrg.org/.

[3] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu,
K. Ramachandran, H. Kremo, R. Siracusa, H. Liu, and
M. Singh. Overview of the ORBIT radio grid testbed
for evaluation of next-generation wireless network
protocols. IEEE WCNC 2005.

[4] R. Shah, S. Roy, S. Jain, and W. Brunette. Data
MULEs: Modeling a Three-tier Architecture for Sparse
Sensor Networks. In IEEE SNPA, 2003.

[5] B. Walker and T. C. Clancy. A quantitative evaluation
of the meshtest wireless testbed. In TridentCom 2008,
March 2008.

[6] W. Zhao, M. Ammar, and E. Zegura. A Message
Ferrying Approach for Data Delivery in Sparse Mobile
Ad Hoc Networks. In ACM MobiHoc, 2004.

107


