
Delay-Tolerant Network Experiments on the MeshTest
Wireless Testbed

Matthew R. Seligman Brenton D. Walker T. Charles Clancy
Laboratory for Telecommunications Sciences

College Park, MD, USA
seligman@ltsnet.net brenton@ltsnet.net clancy@ltsnet.net

ABSTRACT
Delay Tolerant Networks (DTNs) are a class of networks in
which a contemporaneous end-to-end path from source to
destination generally does not exist. Such networks use on
a store-carry-forward communication model which relies on
the mobility of nodes to transfer data between geographi-
cally separated nodes. DTN researchers have relied heavily
on simulation for evaluation, due to the difficulty and ex-
pense of running live experiments with real devices running
real DTN implementations.

MeshTest is a laboratory-based multi-hop wireless testbed
that subjects real wireless nodes running real DTN imple-
mentations to reproducible mobile scenarios. It uses shielded
enclosures and an RF matrix switch to dynamically control
the attenuation experienced between pairs of nodes. The
testbed is an ideal platform for DTN testing, offering con-
venient experimental control and data management.

We have installed the DTN2 Reference Implementation
on wireless nodes within the testbed, and in this paper, we
report on a series of experiments based on the well-known
Data MULE model. Specifically, we investigate the effects
of buffer limitations on the data MULEs and sensors node,
velocity of the data MULEs, and bundle generation size and
rate. We report results on message delivery rate and la-
tency for varying experimental parameters. We found that
an encounter between nodes does not guarantee a successful
data transfer. In our experience, the quality and duration
of the link, contention, and load on the nodes all influence
its performance.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication; C.4 [Performance of Systems]: Measure-
ment techniques

General Terms
Algorithms, Performance, Experimentation

Copyright 2008 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
CHANTS’08, September 15, 2008, San Francisco, California, USA.
Copyright 2008 ACM 978-1-60558-186-6/08/09 ...$5.00.

1. INTRODUCTION
Delay Tolerant Networks (DTNs) are a class of networks

in which a contemporaneous end-to-end path from source
to destination generally does not exist. Such networks use
a store-carry-forward communication model which relies on
the mobility of nodes to transfer data between geographi-
cally separated nodes. DTN applications include sensor net-
works, wildlife tracking networks, interplanetary networks,
and user-to-user communication networks in harsh condi-
tions with no communications infrastructure.

DTN researchers have relied heavily on simulation for
evaluation, due to the difficulty and expense of running live
experiments with real devices running real DTN implemen-
tations. Laboratory-based experiments do not reflect the
dynamic link conditions nodes experience in the field or the
mobility on the scale necessary to test a DTN because it
is difficult to achieve indoors. On the other hand, field
tests require a large number of subjects and coordination
over large geographic areas to generate realistic experiments.
Even with careful choreography, such experiments are only
marginally reproducible, making testing and debugging dif-
ficult. Data management and experimental control are also
issues with live tests. An out-of-band communication chan-
nel is necessary to avoid the interference between experi-
mental data and control information.

MeshTest is a laboratory-based multi-hop wireless testbed
that offers a hybrid between field testing and simulation [2].
The testbed features wireless nodes placed in shielded en-
closures with their RF wired into a matrix switch of pro-
grammable attenuators. By dynamically adjusting the at-
tenuations between the nodes, the nodes subjected to the
effects of arbitrary physical arrangements and mobility sce-
narios. The testbed allows diverse variety of experiments to
be run with real hardware and real implementations, while
being able to closely monitor and control the nodes.

Since MeshTest is an ideal platform for DTN experimen-
tation, we installed the DTN2 Reference Implementation on
the testbed nodes and ran a variety of experiments similar
to the well known Data MULE scenario [19]. This scenario
features mobile data MULEs which provide store-and-carry
forwarding from stationary data-generating sensors to an
access point (AP) where all data is offloaded. We have
generated an 8-hour mobility scenario and ran several exper-
iments, varying parameters under these identical conditions.
We report a variety of statistical results to better understand
the effects of these experimental variations, including mes-
sage completion rate, latency, and buffer size.

49

2. PRIOR WORK
In this section, we briefly describe some DTN applications

and highlight prior work done in testing DTN algorithms
on various platforms, such as simulations, emulations, and
testbeds.

2.1 DTN Applications
Remote location Internet service Remote Internet

service projects aim to provide asynchronous Internet ac-
cess to users without access to infrastructure-based Internet
service. In some cases, infrastructure-based Internet service
is cost-prohibitive in remote or third-world regions, such as
in DakNet [12], TIER [22], KioskNet [9, 18], and the Wizzy
Digital Courier [24]. In other cases, traditional Internet ser-
vice is not available due to the limitations of the technology
used, such as the Sami Network [16], where there is no satel-
lite coverage.

Wildlife sensor networks These sensor networks are
intended to monitor animals in their natural habitat, be
it land or sea, and migrate the data to access points and
eventually back to researchers. Unique challenges exist in
these networks, including the method of deployment and
maintenance. Some examples are ZebraNet [7] and SWIM,
a sensor network for whales [20, 21].

Urban Internet service Urban Internet DTNs aim to
provide Internet access through the use of public mobile re-
sources. UMassDieselNet [5] uses public buses in the city of
Amherst, MA to provide asynchronous Internet service to
users on buses and along bus routes.

Military communications The DARPA sponsored Dis-
ruption Tolerant Networking program [3] is developing DTN-
based military tactical radio for situations where peer-to-
peer communications are required and a communications
infrastructure is not available.

2.2 DTN Research Approaches
We have found that the most common approaches to re-

search and evaluating the performance of new DTN algo-
rithms in challenged networking applications are:

• Simulation and emulation

• Fixed infrastructure testbeds

• Choreographed mobile tests

DTN simulations provide a method for quickly prototyp-
ing new algorithms and testing the performance of algo-
rithms under a variety of conditions at relatively low cost.
Many facets of a mobile, wireless network are abstracted,
such as mobility, interference, fading, and real world issues
encountered with real implementations, such as processing
limitations on the nodes and implementation bugs. In ad-
dition, there are a growing number of different DTN simu-
lators, and no particular simulator has become the defacto
tool of choice. It is difficult to compare results from different
papers due to the lack of simulator conformity (unlike the
fairly standard use of ns-2 for TCP/IP research). The high
level of abstraction in simulations leads to results that are of
questionable realism, and the lack of conformity limits the
usefulness of those results generated.

In [4] Emulab was used to test the DTN2 Reference Im-
plementation under a variety of scenarios. The DTN2 imple-
mentation was compared to Sendmail and FTP in its abil-
ity to transfer data. Emulab provides a flexible platform
to conduct repeatable experiments. The drawback of the

Figure 1: Assembly and connection of the shielded
enclosures and RF switch.

emulation approach is that all aspects of the MAC, PHY,
and RF environment are still simulated for mobile, wireless
applications.

Fixed infrastructure testbeds such as DieselNet and [11]
provide realism by using an actual DTN implementation and
real devices. The DTN2 Reference Implementation, freely
available through the DTNRG [6], provides a common plat-
form for experimentation. Its adoption by many researchers
makes comparing results possible. Although generated re-
sults are real, they tend to be limited to one type of test,
and once systems are deployed, they are difficult to monitor,
modify and update.

Lastly, choreographed mobile tests provide real mobile
and wireless network conditions while allowing for the use of
the DTN2 reference implementation and real devices. Con-
versely, choreographed mobile field tests cannot be re-run
arbitrarily and are impossible to precisely replicate. Some
wireless testbeds have been considered for DTN experimen-
tation such as the Roomba MADNeT testbed [10]. Although
this platform is flexible, the physical test space is limited in
size and the external wireless environment cannot be fully
controlled.

Given the three approaches described above, there is a
clear need for a testbed that can provide realistic mobile
wireless network conditions, repeatability, and experimental
control, while using the DTN2 reference implementation on
real wireless devices. MeshTest addresses all of these needs
to some extent, making it an ideal platform for testing mo-
bile, wireless DTNs.

50

Digital Attenuators
Splitters

"Outputs"

Splitters

"Inputs"

Figure 2: RF matrix switch diagram, showing n up-
per I/O ports, b lower I/O ports, and nb Ethernet-
controlled digital attenuators with ranges 0-127 dB

3. MESHTEST TESTBED
MeshTest consists of a rack of 12 computers in shielded

enclosures, an RF matrix switch, and a server that provides
experiment control, as depicted in Figure 1. The RF from
each computer’s WiFi card is cabled through the enclosures
and into the matrix switch of programmable attenuators.
The enclosures prevent inadvertent cross-talk, and the ma-
trix switch allows us to arbitrarily control the attenuation
between the devices. A practical evaluation of the testbed’s
RF environment and mobility management can be found in
[23].

Figure 2 shows the logical construction of an n× b switch.
It has n inputs that connect through nb digital attenuators
to b buses. Each bus has a direct, unattenuated, external
connection. Note that the RF switch only simulates inter-
node channel loss, and not propagation times.

While any device, from cellular telephones to software-
defined radios, may be placed into the enclosures, the default
configuration involves 802.11-based computers. Through a
partnership with Rutgers, nodes and simulation manage-
ment software from their ORBIT testbed [13] have been
acquired.

The MeshTest testbed uses ORBIT’s testbed management
software to control the nodes. The additional piece neces-
sary to make MeshTest work is software to map physical ar-
rangements of nodes to the appropriate attenuator settings,
and upload those settings to the switch in real-time during
an experiment. A GUI-based program was developed to per-
form these functions. The program allows a user to visually
place nodes in a two-dimensional space and draw their de-
sired mobility patterns. The program can also load, display,
and process mobility scenarios from XML files generated by
other programs.

Programming the digital attenuator settings for the ma-
trix switch is not as obvious as it may seem. In particular,
taking an arbitrary physical arrangement of devices one can
easily compute a matrix, L, of inter-node attenuations, but
adapting these values for the switch’s matrix of attenuators
can be challenging. In Figure 2, we can see that n nodes con-
nect through nb attenuators to b buses. Let S be an n × b
matrix representing the settings of the nb attenuators. In
[1], it is shown that finding appropriate attenuator settings
is equivalent to finding S such that

Λ . ∗ ST S = L (1)

where .∗ is MATLAB notation for entry-wise multiplication
of matrices, rather than standard matrix multiplication, and
Λ is the insertion loss of the switch.

In [1] it is shown that one can use simulated annealing [15]
to compute an approximate decomposition, S, for a variety
of scenarios, including static topologies, mobile topologies,
and situations that involve multi-path fading.

4. EXPERIMENTS
We setup and ran experiments analogous to the Data

MULE model described in [19]. Specifically, we adopted
the three-tier architecture, including the assumptions made
about the functionality of each tier. This includes stationary
access points (AP) and sensors, and mobile data MULEs.
The key assumptions are:

• Each sensor is resource-constrained

• Date MULEs do not exchange data

• Mobility of Data MULEs cannot be controlled

4.1 Software
All nodes within the testbed are running version 2.5.0 of

the DTN2 reference implementation available from the DT-
NRG website[6]. The DTN2 reference implementation in-
cludes an application called dtnsend for sending bundles and
a receive bundle application called dtnrecv. When dtnsend is
invoked, the generated bundle is stored by dtnd on the sen-
sor until a data MULE comes within range. When a MULE
comes into contact with the AP, as many bundles as possible
are transferred to the AP and stored locally by dtnd. The dt-

nrecv application processes them asynchronously which may
cause the application to fall behind the actual data trans-
fer. This functionality is required for the applications to be
delay-tolerant.

4.2 Routing
We used the DTN2 static routing module with the follow-

ing two forwarding rules:

• Sensors only forward data to MULEs

• MULEs only forward data to the AP

Each data MULE periodically sends out discovery an-
nouncements, and all nodes listen for these announcements.
When a node detects a MULE, it opens an opportunistic

link. All opportunistic links remain in the routing table
until dtnd is restarted, though they are marked as “Unavail-
able” once the MULE is out of range. This discovery scheme
was used for two reasons. First, as [19] states, sensor are as-
sumed to be power constrained and should minimize their
transmissions. Second, we have observed that if a sensor
discovers the AP, the sensor would never pass any bundles
to the MULEs. There is a certain probability that a sensor
would pick up a discovery announcement sent by the AP,
even if they were outside practical communication range.
Therefore only the MULEs are allowed to send out discov-
ery announcements.

4.3 The Base Case Configuration
We ran one experiment that serves as the control, or base

case experiment, and all other experiments vary in one as-
pect from the base case. In this section, we describe in detail
the base case configuration.

51

Figure 3: Node arrangement and mobility pattern
for the first two hours of the experiment. Nodes 1-7
are stationary sensors, node 9 is the AP, and nodes
11-12 are mobile data MULES. The red dots along
the MULE paths are points where the boundary was
encountered, or a new random direction was chosen.

4.3.1 Data Generation
Each sensor in the experiment generates bundles accord-

ing to a Poisson process with intensity λ = 0.0333/sec, i.e.
on average one bundle every 30 seconds. The size of the
bundles is normally distributed with mean µ = 10KB and
variance σ2 = 5KB. The data generator on each node uses
the same random seed for each experiment to ensure re-
peatability. The random seeds are based on the nodes’ IP
addresses.

4.3.2 Node Positioning
The position of each of the seven sensors was chosen uni-

formly randomly in a 3km× 3km area. The AP is placed in
the center of the area. The initial position of each MULEs
was also chosen uniformly randomly. A single arrangement
of nodes was chosen and used for all experiments. The posi-
tions of all nodes during an experiment are shown in figure 3.

4.3.3 Node Storage
Each sensor’s bundle storage is restricted to 500KB. In

the base case, no limits are placed on the storage space of
the MULEs.

4.3.4 Mobility
The data MULEs follow a Random Direction mobility pat-

tern [14]. On a bounded square, this model gives a uniform
long-term spatial distribution. That is, the model does not
suffer from edge effects, which would tend to disadvantage
nodes close the edges of the test area. In our implemen-
tation, each MULE chooses a direction θ uniformly from
[0, 2π), a velocity v from [20km/h, 40km/h], and a trip du-
ration from [2min, 10min]. Then, each MULE travels in the
chosen direction at the chosen velocity for the chosen amount

500 KB Buffer Limit on
Each Sensor

No Buffer Limit on
Each Sensor

1500 KB Buffer Limit
on Each Data MULE

2x Data MULE
velocity

Smaller data
generation size and
higher generation

rate

Figure 4: The relationships between our different
experiments. The middle gray box denotes the con-
trol, or base case experiment, and all other experi-
ments vary a single aspect of the base case.

of time and repeats this process. When a node encounters
the boundary it reflects, that is, the component of the ve-
locity perpendicular to the boundary is reversed.

Figure 3 shows the paths followed by the MULEs during
the first two hours of the eight hour experiment.

4.4 Experiment Methodology
In this section we describe the rest of our experiments.

Figure 4 visualizes the relationships between the different
experiments. The following is a list of parameters that we
experimented with:

• Buffer Capacity: The base case has a 500KB limit on
each sensor and no limits on the MULEs or AP. One of
the other experiments removes all buffer capacity limits,
and another experiment adds 1500KB buffer limits to
the MULEs.

• Data MULE Velocity: In the base case data MULEs
choose their velocity uniformly from [20km/hr, 40km/hr].
We ran one experiment which doubled the speed of the
MULEs, so they fall in the interval [40km/hr, 80km/hr].

• Data Generation: The data bundles are generated ac-
cording to a Poisson process, on average once every 30
seconds, with normally distributed sizes. We ran one
other experiment in which 341 Byte bundles were gener-
ated on average every 1.0 seconds. This yields the same
average data generation rate as the base case.

4.5 Metrics
The following metrics are used to evaluate and compare

results among the experiments:

• Bundle Completion Rate (BCR)

BCR =
Unique Received Bundles

Generated Bundles

52

• Data Completion Rate (DCR)

DCR =
Unique Received Bytes

Generated Bytes

• Mean Latency - Only data received by dtnrecv is included
in this metric. Therefore, data residing at its destination
node not processed by the application is not included.

• Buffer Usage - Amount of storage used on a node at a
given time

• Time-Weighted Network Storage [17] - Average amount
of buffer usage, weighted by time. In a DTN, data may
be stored for a long period of time, so the nominal buffer
usage is not always of particular interest. In many cases,
we are particularly interested in how long a node’s buffer
usage is high or at capacity, which is more accurately
captured by the time-weighted network storage.

• Time Spent at Capacity (TSC) - Amount of time a node’s
buffer size is at its capacity

5. RESULTS
Each experiment lasted 8 hours. This means the exper-

iments actually ran for 8 hours since the testbed runs in
real-time. The first 26,000 seconds of results were used for
our analysis.

5.1 Base Case
As described in Section 4, we put a 500KB buffer limit

on each sensor. On average, the data generation rate is
0.33KB/sec. Therefore, a buffer capacity limit of 500KB
was selected to ensure that multiple sensors would operate
at or near capacity during the experiment.

Figure 5 shows the buffer usage vs. time for Node 3 and
Node 4. Node 3 spends the majority of the time from 8000−
15000s at capacity. When a node is at capacity any newly
generated data by is dropped due to insufficient storage. On
the other hand, node 4 did reach capacity several times, but
in all cases, a MULE was nearby to offload some or all of its
data. Therefore, the TSC of node 3 is significantly higher
than the TSC of node 4. In fact, table 1 shows that the node
3 TSC is more than five times that of node 4. Both nodes
experience instances of partial offloading, where a MULE
was able to take some, but not all of the sensor’s data.

In table 1 we observe a correlation between the mean la-
tency and the TSC, and inverse relationship between BCR
and mean latency. This is what we would intuitively expect,
as sensors that have low TSC must be visited frequently by
the MULEs, leading to more frequent bundle deliveries, and
the buffering of younger bundles. If the sensors used a differ-
ent queueing strategy we might see the correlation between
TSC and latency disappear.

Based on comparisons with other base case runs, we found
that node 2 suffered from several failed connection oppor-
tunities in this experiment. This led to poorer than usual
results for node 2, and a discrepancy between nodes 2 and
7, despite their physical proximity.

5.2 No Buffer Limit on Sensors
This experiment is identical to the base case, except there

was no limit on the sensors’ buffer capacity. The buffer usage
vs time for three sensors is plotted in figure 6. We observe
the steady increase in buffer usage due to data generation,
and the occasional sharp decreases corresponding to a data

0 2000 4000 6000 8000 10000 12000 14000 16000
0

50

100

150

200

250

300

350

400

450

500

550

time(seconds)

bu
ffe

r u
sa

ge
 (k

B)

Node 3
Node 4

Figure 5: Base case buffer usage for nodes 3 and 4.
Both nodes reach capacity at some point, and both
experience instances of partial offloading.

Node BCR DCR Latency(s) TSC(s)
4 0.9250 0.9209 1214.73 1956
1 0.8818 0.8758 1356.83 1708
7 0.8369 0.8211 1775.95 3820
5 0.6118 0.6080 2104.59 9273
2 0.5894 0.5784 2735.99 11747
6 0.5114 0.4948 2797.73 8402
3 0.4889 0.4742 3032.53 11007

Table 1: BCR, DCR, Mean Latency, and TSC for
Sensor Nodes with 500 KB Buffer Limit Sorted by
BCR

MULE coming within range. Given our particular mobility
scenario, node 7 has less frequent contacts with the data
MULEs in comparison to the other nodes. This is especially
true during the time period, t = 0−5000, during which time
its buffer usage grows to over 1.5MB.

In comparison to the base case this experiment shows a
significant increase in BCR and a decrease in latency, espe-
cially for nodes that are further from the AP. This is what
we would expect, as the sensor nodes are not forced to drop
bundles when their buffers reach capacity. In comparison
to the base case results, we do not observe any correlation
between mean latency and BCR.

In this experiment nodes 2 and 7 both perform normally
and have very similar results. On the other hand node 1
appeared to malfunction in the last hour of the experiment,
driving its results down.

5.3 Buffer Limit on Sensors and Data MULEs
In this experiment we put a 1500KB limit on the the Data

MULE buffers. This is three times the limit on the sensors.
We chose this limit expecting that the MULEs would fre-
quently be at capacity, and hoping that this fact would yield
contrasting results. Results are shown in table 3. When a
MULE is at capacity it will not accept any bundles from the

53

0 5000 10000 15000
0

200

400

600

800

1000

1200

1400

1600

time (seconds)

bu
ffe

r u
sa

ge
 (k

B)

Node 7
Node 5
Node 4

Figure 6: No buffer limit on sensors. We observe
that some nodes have more frequent contact with
the data MULEs.

Node BCR DCR Latency(s)
4 0.9789 0.9787 841.97
7 0.9717 0.9755 1393.56
2 0.9635 0.9625 1723.43
6 0.8788 0.8729 1544.54
5 0.8692 0.8677 1732.58
3 0.8517 0.8638 1676.26
1 0.7996 0.8001 1130.58

Table 2: BCR, DCR, and Mean Latency for Sensor
Nodes With No Buffer Limit, Sorted by BCR

sensors. As expected, the BCR and DCR for each sensor
node tends to be worse than in the base case.

Another effect of the data MULE buffer limitation is star-
vation. We observe that nodes further from the AP tended
to have higher TSC statistics. We hypothesize that data
MULEs are often at capacity by the time they reach the
more distant nodes. We believe that under such conditions,
some mechanism, such as rate-limiting or a more preemptive
scheme, such as WRED, needs to implemented to enforce
fairness and allow all sensor nodes to offload data. Without
this mechanism in place, this scenario always favors sensor
nodes that are seen by the data MULE soon after it vis-
its the AP. We leave the research and implementation of a
traffic management scheme as future work.

Table 3 includes TSC figures for the MULEs. In our ex-
periments we have observed that MULE node 12 tends to
pick up and deliver more bundles than node 11, and this
is reflected in the MULEs’ TSC values. Node 12 has a full
buffer for roughly one third of the experiment, and during
this time, it cannot accept any new data.

5.4 Double MULE Velocity
In this section, the velocity of each data MULE is dou-

bled. The mobility pattern used in the other experiments
is repeated twice, taking only four hours to complete each
time. Results are shown in table 4. One would expect that

Node BCR DCR Latency(s) TSC(s)
1 0.7286 0.7075 966.47 414
7 0.7146 0.7154 1080.86 787
4 0.7046 0.7043 761.82 0
3 0.6689 0.6530 1835.49 2688
2 0.6376 0.6313 1510.47 3806
6 0.5731 0.5568 1702.47 4082
5 0.4697 0.4693 2071.72 7224
11
(MULE)

5481

12
(MULE)

8516

Table 3: BCR, DCR, Mean Latency, and TSC for
Sensor Nodes with 500 KB Buffer Limit and Data
MULEs with 1500 KB Buffer Limit Sorted by BCR

by increasing the data MULEs’ velocity, there will be more
frequent offloading opportunities for the sensor nodes, and
more frequent opportunities for the data MULEs to offload
data to the access point. We observe that TSC values are
trivial for most nodes (nodes 5 and 1 malfunctioned for vary-
ing periods of the experiment). The mean latency values are
generally less than half what we see in the base case. Note
that in previous experiments when a sensor reached capacity
the youngest bundles would be dropped, and in this experi-
ment those bundles are more likely to be delivered.

Node BCR DCR Latency(s) TSC(s)
7 0.9932 0.9921 666.54 0
2 0.9800 0.9776 753.59 201
4 0.9789 0.9810 463.02 0
3 0.9665 0.9674 885.74 19
6 0.9440 0.9443 883.41 0
1 0.8637 0.8572 915.47 3592
5 0.3329 0.3345 42228.13 17443

Table 4: BCR, DCR, Mean Latency, and TSC for
Sensor Nodes with Data MULEs Moving at 2x Ve-
locity Sorted by BCR

This experiment revealed that the quality of the contacts
can play a role in network performance. For example, the
experiment reported above was run with MULEs broadcast-
ing discovery announcements every second. In comparison,
figure 7 shows results for a double-speed experiment where
MULEs sent discovery announcements every five seconds. In
this case the node misses several opportunities to establish
a link to the MULE, and actually performs worse than in
the base case. The regular-speed experiments were not as
sensitive to changing the discovery interval.

5.5 Decrease Bundle Size and Increase Bun-
dle Generation Rate

In this experiment we modified the data generation pro-
cess to maintain the same average data generation rate, but
split the data into many small bundles. All bundles in this
experiment are 341 bytes, and the generation process is still
Poisson, but with an intensity of λ = 1.0/sec. Since we
maintain the same average data generation rate, it is still

54

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

time (seconds)

bu
ffe

r u
sa

ge
 (k

B)
Base case experiment
Fast mules experiment

Figure 7: Buffer usage for the 2x velocity MULE
experiment with five second discovery interval com-
pared to base case. Despite the more frequent en-
counters this node had fewer successful uploads to
the MULE.

reasonable to make comparisons to the base case. For all
nodes, the results in table 5 exhibit lower BCR and higher
mean latency compared to the base case. Part of the reason
for this seems to be the overhead associated with processing
so many bundles. We have observed that when a MULE
is near the AP, it will often be running with load average
1.50 or above, and still be unable to move all of its bundles
to the AP during the encounter. After about three hours
both MULEs seem to be completely overwhelmed and their
buffers soar to over 10MB, which corresponds to over 30, 000
bundles. Of course our test parameters may seem extreme,
but it does show that when dealing with many small bits of
data, some sort of data consolidation may be necessary. We
note that this sort of behavior would be difficult to accu-
rately model in a simulation.

Node BCR DCR Latency(s) TSC(s)
4 0.5307 0.5307 2472.05 2520
2 0.5199 0.5199 2448.75 1336
7 0.5136 0.5136 2653.64 2846
3 0.4985 0.4985 2588.42 2126
1 0.4530 0.4530 2401.97 1552
6 0.4063 0.4063 3110.20 2314
5 0.1742 0.1742 8573.97 6473

Table 5: BCR, DCR, Mean Latency, and TSC for
Sensor Nodes with Bundle Size of 341 bytes and
Bundle Generation Rate λ = 1/sec Sorted by BCR

6. CONCLUSION
In this paper, we conducted original experiments using the

MeshTest testbed and the DTN2 reference implementation.
We focused on the Data MULE scenario in which station-
ary sensors generate data that is aggregated onto mobile

data MULEs, and eventually offloaded to an AP. The base

case experiment, which was derived from the original Data
MULE work [19], provided a foundation of results to com-
pare to in terms of completion rate, buffer usage, and time
spent at capacity. From the base case, we varied several pa-
rameters including relaxing the buffer capacity limitation,
adding a buffer limitation to the data MULE, and increas-
ing the velocity of the data MULEs.

As expected, removing the buffer limitation on sensors
led to better network performance as less data had to be
dropped by the sensors. Also doubling the MULE velocity
led to more transfer opportunities and better performance,
as long as the links were discovered quickly enough to take
advantage of them. This demonstrates the need to consider
an efficient data exchange algorithm when contact times are
small.

When limiting the buffer capacity at the data MULE, we
found that some sensor nodes were starved, as the MULEs
were providing unfair service to the sensors. This result
shows the need for some type of traffic management scheme
to provide fair service to all sensor nodes. In addition, the
buffer-limited data MULE was biased towards higher latency
values in its results, since at capacity, the MULE would
always hold older bundles rather than pick up younger ones.

In all experiments, we observed a non-negligible bundle
duplication rate. This demonstrates the utility of a duplica-
tion detection mechanism at a higher layer than the conver-
gence layer, such as custody transfer included in the DTN
bundle protocol specification [8].

With real hardware and software comes inevitable mal-
functions, and we have observed these in our experiments.
Out of several dozen experiments we had very few runs
where all nodes performed as expected for the entire exper-
iment. For completeness these results have been included.

Finally, we demonstrated that MeshTest is an ideal eval-
uation platform for real DTN implementations. It allows
us a great deal of realism, as it uses real implementations
and real hardware, and also features repeatability and ex-
perimental control. We expect that experiments and testing
carried out on MeshTest will lead to better, more reliable
DTN implementations, and more reality-focused research.

7. FUTURE WORK
Since the purpose of these experiments was to create an

initial DTN testing capability on MeshTest, there is a great
deal of future work necessary to provide mature, reliable
results. First, we need to better understand the function-
ality and behavior of the DTN2 reference implementation.
During our experimentation, we often found it difficult to
monitor the real status of the dtnd daemon, especially when
tracking which bundles were residing in a particular node’s
storage. We also observed certain node behaviors that we
suspect are bugs. The testbed will be an ideal platform for
debugging implementations such as DTN2.

In addition to the experimental setup, there are several
items tagged as future work throughout this paper. In par-
ticular, we noted that the non-trivial number of duplicate
bundles demonstrate the need to study the effects of cus-

tody transfer mechanisms. Another interesting future task,
particularly for the data MULE scenario, is to identify an
approach allowing fair service to all sensor nodes in a DTN
when data MULE buffer capacity limits exist. For sensor
node applications, the data collected would be biased if they

55

were collected from a biased subset of the sensor nodes.
Therefore, research on traffic management schemes (i.e. how
much data a sensor node is allowed to offload during a given
contact with the MULE) is necessary.

Lastly, the data MULE scenario is representative of a sub-
set of DTN applications, so for future experiments, we in-
tend to study other DTN scenarios as well, such as message
ferries [25] and limited or no knowledge DTNs using multi-
copy routing algorithms. The work presented in this paper
provides an initial demonstration of the utility of this plat-
form for DTN research.

8. REFERENCES
[1] T. Clancy and B. Walker. Meshtest: Laboratory

testbed for large wireless topologies. IEEE
TridentCOM 2007.

[2] T. C. Clancy and B. D. Walker. Meshtest:
Laboratory-based wireless testbed for large topologies.
In IEEE TridentCom 2007, pages 1–6, 2007.

[3] DARPA Disruption Tolerant Networking Program.
http://www.darpa.mil/sto/strategic/dtn.html.

[4] M. Demmer, E. Brewer, K. Fall, S. Jain, M. Ho, and
R. Patra. Implementing Delay Tolerant Networking.
Technical Report IRB-TR-04-020, Intel Research
Berkeley, 2004.

[5] UMassDieselNet.
http://prisms.cs.umass.edu/dome/.

[6] DTN Research Group. http://www.dtnrg.org/.

[7] P. Juang, H. Oki, Y. Wang, M. Margaret,
P. Li-Shiuan, and R. Daniel. Energy-Efficient
Computing for Wildlife Tracking: Design Tradeoffs
and Early Experiences with ZebraNet. In ASPLOS-X,
2002.

[8] K. Scott and S. Burleigh. Bundle Protocol
Specification. IETF RFC 5050, 2007.

[9] KioskNet. http://blizzard.cs.uwaterloo.ca/
tetherless/index.php/KioskNet/.

[10] Roomba MADNeT : A Mobile Ad-Hoc Delay Tolerant
Network Testbed. http://dna-pubs.cs.columbia.
edu/citation/paperfile/150/reich_MC2R.pdf.

[11] E. Oliver and H. Falaki. Performance evaluation and
analysis of delay tolerant networking. In MobiEval ’07:

Proceedings of the 1st international workshop on

System evaluation for mobile platforms, pages 1–6,
New York, NY, USA, 2007. ACM.

[12] A. Pentland, R. Fletcher, and A. Hasson. DakNet:
Rethinking Connectivity in Developing Nations. In
IEEE Computer, 2004.

[13] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu,
K. Ramachandran, H. Kremo, R. Siracusa, H. Liu,
and M. Singh. Overview of the ORBIT radio grid
testbed for evaluation of next-generation wireless
network protocols. IEEE WCNC 2005.

[14] E. M. Royer, P. M. Melliar-Smith, and L. E. Moser.
An analysis of the optimum node density for ad hoc
mobile networks. In IEEE ICC 2001, volume 3, pages
857–861, 2001.

[15] S. Russell and P. Norvig. Artificial Intelligence: A

Modern Approach. Prentice Hall, 2002.

[16] Sami Network. http://www.snc.sapmi.net/.

[17] M. Seligman, K. Fall, and P. Mundur. Storage routing
for dtn congestion control. Wireless Communications

and Mobile Computing, 7:1183–1196, 2007.

[18] A. Seth, D. Kroeker, M. Zaharia, S. Guo, , and
S. Keshav.

[19] R. Shah, S. Roy, S. Jain, and W. Brunette. Data
MULEs: Modeling a Three-tier Architecture for
Sparse Sensor Networks. In IEEE SNPA, 2003.

[20] T. Small and Z. J. Haas. The shared wireless
infostation model: a new ad hoc networking paradigm
(or where there is a whale, there is a way). In MobiHoc

’03: Proceedings of the 4th ACM international

symposium on Mobile ad hoc networking & computing,
pages 233–244, New York, NY, USA, 2003. ACM.

[21] T. Small and Z. J. Haas. Resource and performance
tradeoffs in delay-tolerant wireless networks. In
WDTN ’05: Proceedings of the 2005 ACM SIGCOMM

workshop on Delay-tolerant networking, pages
260–267, New York, NY, USA, 2005. ACM.

[22] TIER Project. http://tier.cs.berkeley.edu/.

[23] B. Walker and T. C. Clancy. A quantitative evaluation
of the meshtest wireless testbed. In TridentCom 2008,
March 2008.

[24] Wizzy Project. http://www.wizzy.org.za/.

[25] W. Zhao, M. Ammar, and E. Zegura. A Message
Ferrying Approach for Data Delivery in Sparse Mobile
Ad Hoc Networks. In ACM MobiHoc, 2004.

56

