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ABSTRACT
Opportunistic forwarding, by which data is randomly re-
layed to a neighbor based on local network information, is
a fault-tolerant distributed algorithm particularly useful for
challenged ad hoc and sensor networks where it is difficult
to obtain global topology information because of frequent
disruptions. Also, duty cycling is a common technique that
constrains the RF operations of wireless devices for saving
the battery energy and thus extending the longevity of the
network. The combination of opportunistic forwarding and
duty cycling is a useful approach for wireless ad hoc and sen-
sor networks that are plagued with energy constraints and
poor connectivity. However, such a design is hampered by
the difficulty of analyzing and controlling its performance,
particularly, the end-to-end latency. This paper presents
analytical results that shed light on the latency of oppor-
tunistic forwarding in wireless networks with duty cycling.
In particular, we give approximation formulas and bounds
for the expected latency of opportunistic forwarding in pres-
ence of duty cycling for general finite network topologies,
and an exact formula for a specific regular network topology
that captures some common sensor network deployment sce-
narios. Moreover, our results concern finite-sized networks,
and hence, are practically more useful than other asymptotic
analyses in the literature.

Categories and Subjects: C.2.1 [Computer-Communication
Networks]: Wireless communication G.2.2 [Graph Theory]:
Network problems

General Terms: Theory, Design, Performance

Keywords: Wireless ad hoc and Sensor Networks, Op-
portunistic Forwarding, Duty Cycling, Random Walk on
Graphs

1. INTRODUCTION
In challenged wireless ad hoc and sensor networks where

gathering network topology and state information in a timely
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manner is difficult, simple opportunistic forwarding that re-
quires only local information can be a viable approach. In
such a scheme, a node relays a data packet to a random
neighboring node, until the packet reaches its destination
or expires. The simplest scheme in this category is random
walk, which selects the next hop from among all neighbors
with equal probability, and is independent of the past selec-
tions. Although random walk based algorithms inevitably
incur a higher latency than optimized routing algorithms,
they are robust under ad hoc topology changes, and require
minimal computational capability. Hence, they are suitable
for resource constrained devices.

Also, energy conservation is an important consideration
in many battery-powered wireless networks. This is because
RF transceivers consume a significant amount of energy
not only for transmission and reception but also for per-
forming idle listening on the channel [11]. Hence, wireless
network designers often implement duty cycling on energy-
constrained wireless devices. A simple duty cycling scheme
is to turn RF transceivers off and on independently and
randomly. Then, forwarding can only occur when the trans-
mitting and receiving nodes are both awake. This does not
require global coordination among the devices, and is more
resilient and self-configuring for ad hoc deployments. On the
other hand, in periodic/deterministic duty cycling schemes,
the on/off schedules of network nodes have to be carefully
coordinated such that efficient routing and forwarding can
occur; such schemes are less robust than random duty cy-
cling schemes.

This paper considers a duty cycling design called pseudo-
random duty cycling, which is more efficient than purely
random duty cycling and retains the benefits of the latter.
Suppose that transmissions occur in slotted time. In pseudo-
random duty cycling, by a priori exchange of pseudo random
number generators (p-RNG) among neighboring nodes and
the occasional exchange of a small set of parameter values
such as the seed and cycle position of p-RNG and wake up
probability, each node can determine the exact on/off state
of all its neighbors. This enables deterministic prediction of
future awake timeslots of neighbors and drastically reduces
the chance of unsuccessful transmissions [12].

We propose a wireless network design that incorporates
both opportunistic forwarding and duty cycling. In this in-
tegrated design, a node predicts the first timeslot in which
any neighbor is supposed to wake up, and then forwards
the packet to it in that timeslot. Ties are broken randomly,
when more than one neighbor wakes up in a timeslot. This
requires only local (neighbor) information, but no global
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topology information, and hence is useful in situations with
limited network connectivity/availability. We refer to this
integrated scheme as a duty cycling random walk. In addi-
tion to being robust against ad hoc topology changes, such
a randomized forwarding scheme is able to avoid the forma-
tion of routing hot spots and non-uniform energy depletion
across the network.

Despite the simplicity of implementation and deployment
of this wireless network design, it is generally non-trivial to
analyze the performance and control it appropriately. Two
key performance metrics that we are concerned with are the
latency incurred by a packet due to duty cycling and op-
portunistic forwarding before reaching its destination, and
the overall energy consumption levels that are directly pro-
portional to the duty cycling probability. In this paper, we
analyze the performance of duty-cycling random walk as a
function of the network size n, and the duty cycling proba-
bility, p, and other properties of the topology such as node
degree distributions.

The end-to-end latency incurred by a random walk on
given networks can be characterized by the expected hitting
time from a source to its destination. However, since duty
cycling changes the fundamental nature of random walk in
terms of latency, new analytical results are necessary. We
build upon the formulation due to Lovasz [10] and provide
bounds and approximation formulas for the expected end-
to-end latency for duty cycling random walk in finite wireless
networks.

We also apply our results to random geometric graphs,
which have been widely-used for modeling diverse wireless
ad hoc networks. We show that our approximation formulas
are reasonably accurate in this context and hence our ana-
lytical results have useful ramifications on analyzing energy-
latency tradeoffs in practical sensor network deployment sce-
narios.

Finally, we study the expected hitting time in a particu-
lar class of regular network topology, called r-nearest cycle,
which can capture some common sensor network deployment
scenarios such as on the banks of a circular lake or build-
ing. We derive an exact analytical formula for computing
the expected hitting time in r-nearest cycle.

While there have been several analytical studies of the
properties of random walks in the extant literature, they are
mostly concerned with the asymptotic behavior of mixing
time or cover time of random walks in large networks [2,3,9];
otherwise they propose general theoretical frameworks for
arbitrary graphs that do not necessarily pertain to wireless
networking [1,4,7]. Our results concern finite-sized networks
that are relevant to wireless ad hoc networking, and hence
are more useful than the aforementioned asymptotic analy-
ses in the literature.

Our analytical results have been validated by extensive
simulations. We believe that by using more accurate anal-
yses, wireless network designers and deployers can make
appropriate choices regarding the tradeoffs between energy
consumption and the resultant end-to-end latency. For in-
stance, if they want to adhere to a certain bound on the aver-
age end-to-end latency, our analytical framework can assist
them to determine an appropriate duty cycling threshold
that meets the energy consumption constraints.

Outline: In Section 2, we first give some technical back-
ground and definitions of the expected hitting times of ran-
dom walks on finite graphs. In Section 3, we derive bounds

and approximation formulas for the latency of random walks
in the presence of duty cycling for general finite networks.
In Section 4, we study the latency for random geometric
graphs. In Section 5, we provide an exact formula for the
expected hitting time of random walk for r-nearest cycle.
Section 7 concludes the paper.

2. EXPECTED HITTING TIME OF
RANDOM WALK ON GRAPHS

Random walk is one of the simplest opportunistic forward-
ing algorithms. The latency can be studied as the hitting
time of random walk. There are several approaches to study
the expected hitting time of a random walk on a graph. For
instance, the effective resistance approach of a graph [1, 9]
can only be applicable to vertex transitive graphs, such that
the topology at every node of the graph is homogeneous.
The discrete Green’s function approach in [4, 7] only ad-
dresses non-boundary nodes on a graph. In this paper, how-
ever, we draw on Lovasz’s formula [10], which computes the
expected hitting time of random walk between any pair of
nodes in a finite graph.

First we define some notations. We consider a connected
undirected graph G = (V, E), where V is the set of nodes and
E is the set of edges. Let the number of nodes be |V| = n
and the number of edges be |E| = m.

Denote the adjacency matrix of G as A where Ai,j =
1[(i, j) ∈ E ]. For each node i ∈ V, let di be the degree of i.
Denote the diagonal matrix of G as D where Di,i = 1

di
and

Di,j = 0 for i 6= j. Let the transition matrix be M = DA
where

Mi,j =
1[(i, j) ∈ E ]

di

For a pair of distinct nodes s, t ∈ V, we denote the ex-
pected hitting time of random walk from s to t as Hs,t,
which satisfies the following equation:

Hs,t = 1 +
1

ds

X
(s,i)∈E

Hi,t and Ht,t = 0 (1)

Define symmetrized transition matrix be N = D
1
2 AD

1
2

where

Ni,j =
1[(i, j) ∈ E ]p

didj

Lovasz solved Eqn. (1) with a solution as follows (see [10]
Theorem 3.1):

Hs,t = 2m

nX
k=2

1

1− λk

“v2
k,t

dt
− vk,svk,t√

dsdt

”
(2)

where λk and vk is the k-th largest eigenvalue and the cor-
responding eigenvector of N. Denote vk,i as i-th entry of
eigenvector vk that corresponds to i ∈ V. Note that since
N is symmetric, all eigenvalues are real numbers. Since
G is connected, by Frobenius-Perron Theorem, we obtain
λ1 = 1 > λ2. Hence, Eqn. (2) is well defined.

Lovasz’s formula (Eqn. (2)) enables more efficient eval-
uation of the expected hitting time than simulations. We
emphasize that Lovasz’s formula is applicable to arbitrary
graphs, while other approaches (e.g. effective resistance)
appear to be only applicable to limited classes of graphs.
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3. RANDOM WALKS WITH DUTY
CYCLING

In this section, we extend random walk to the setting
with pseudo-random duty cycling. We assume that time is
divided into slots and slot boundaries are synchronized (and
re-synchronized) using one of many techniques [5, 6]. Let p
be the probability that a node is awake in a particular time
slot, and 1 − p be the probability of being asleep in a time
slot. In pseudo-random duty cycling [12], nodes are assumed
to have shared knowledge of a pseudo-random number gen-
erator (p-RNG), which is assumed to have happened out-of-
band and may even have been programmed into the system
before bootstrapping.

If a sender becomes aware of the seed and the cycle posi-
tion of the receiver’s p-RNG, it can deterministically predict
the slot in which the receiver is going to be awake and listen-
ing. Thus the sender does not need to attempt to transmit
in each slot with probability p; instead it can determine how
many slots into the future the receiver will become awake,
and only then transmit. Meanwhile, the sender can go to
sleep until the receiver is supposed to wake up. This not
only reduces the energy cost but also reduces the latency of
waiting for an awake slot1.

In this paper, we investigate the forwarding latency in
the low traffic regime in which the effect of interference due
to concurrent wireless transmissions and queuing delays is
negligible. This is not unreasonable since most sensor net-
works with low duty cycles are expected to have low traffic
volumes.

We assume the following forwarding rules at nodes per-
forming duty cycling random walk:

1. Forward data to the earliest neighbor to wake up, based
on the pseudo-RNG computation for the given wake-
up probability.

2. If multiple neighbors wake up in the same time slot,
data will be forwarded to a randomly chosen awake
neighbor with uniform probability.

We refer to such random walk as duty cycling random
walk. Note that these forwarding rules do not alter the re-
sultant transition probabilities, which are the same as those
for simple random walk on finite graphs. In other words, a
duty cycling random walk amounts to first selecting a neigh-
bor with equal probability and then sleeping for the number
of slots until that neighbor wakes up (then the sender wakes
up and transmits to that neighbor). We formally prove this
property in the Appendix.

3.1 Per hop Latency
Now we estimate the expected per hop latency of random

walks in the presence of pseudo-random duty cycling. Sup-
pose node i is waiting to forward data, which has a set of
di neighbors, denoted as Nbi ⊆ V. Each of these neighbors
is performing pseudo-random duty cycling with probability
p. Let W (i) be the random variable denoting the number of
slots at i before one of the neighbors of i wakes up. There-
fore W (i) = min{W1,W2, . . . ,Wd}, where Wj is the waiting

1Note that the processors of nodes are on, even if the
transceiver may be off at certain times, and hence such com-
putations are feasible.

time random variable for neighbor j ∈ Nbi.

Lemma 1. For all i ∈ V,

E[W (i)] =
1

1− (1− p)di
Proof. Note that each Wj is a geometrically distributed

random variable with parameter p. For t ≥ 1, the per-hop
latency probability distribution is:

P{W (i) ≥ t} = P{min(W1,W2, . . . ,Wdi) ≥ t}
= P{∀j ∈ Nbi,Wj ≥ t}
= (1− p)(t−1)di

Since W (i) is non-negative, the expected per-hop latency
until data is forwarded to some awake neighbor is:

E[W (i)] =

∞X
t=1

P{W (i) ≥ t}

=

∞X
t=1

(1− p)(t−1)di =
1

1− (1− p)di

Clearly the expected per-hop latency decreases with de-
creasing node degree di. For extremely low duty cycling
rates (i.e. small values of p), we obtain: E[W (i)] ≈ 1

pdi
.

3.2 Latency with Duty Cycling
Since each node is scheduling its wake-up slots indepen-

dently from each other with equal wake-up probability p, it
is equivalent to first selecting a neighbor with equal prob-
ability and waits for W (i) slots to forward data (see the
Appendix for the formal proof).

For a pair of nodes s, t ∈ V, we denote the expected hitting
time of random walk with pseudo-random duty cycling from
s to t as Ls,t. By Lemma 1, Ls,t satisfies:

Ls,t =
1

1− (1− p)ds +
1

ds

X
(s,i)∈E

Li,t

Unlike Hs,t, it is much harder to solve for Ls,t since the
per hop latency is not homogeneous at all nodes. Hence, we
derive bounds for Ls,t that helps us to estimate the expected
end-to-end latency with pseudo-random duty cycling.

Theorem 2. Given a graph G, the expected hitting time
of random walks with pseudo-random duty cycling from s
to t is bounded by:

Hs,t

1− (1− p)dmax
≤ Ls,t ≤

Hs,t

1− (1− p)dmin

where dmin and dmax are the minimum and maximum node
degrees of G.

Proof. Clearly, for all i ∈ V,

1

1− (1− p)dmin
≥ 1

1− (1− p)di ≥
1

1− (1− p)dmax

Hence, the expected per-hop latency is bounded as:

1

1− (1− p)dmax
≤ E[W (i)] ≤ 1

1− (1− p)dmin
(3)

Therefore, the expected end-to-end latency, summing over
an average Hs,t hops, is bounded similarly.
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3.3 Approximations
Although it is hard to solve for Ls,t exactly, we can provide

two better approximations based on the following heuristics:
1) We define the first approximation as:

L̃
(1)
s,t ,

Hs,t

1− (1− p)d̄

where d̄ is the average node degree of G.
We consider a sample path of random walks with pseudo-

random duty cycling from s to t on G, (s = v1, v2, ..., v`, t).
The hitting time is

L` =
X̀
i=1

1

1− (1− p)dvi

It is easy to check that f(d) = 1
1−(1−p)d is a convex function.

By Jensen’s inequality, we have:

1

`

X̀
i=1

1

1− (1− p)dvi
≥ 1

1− (1− p)
1
`

P̀
i=1

di

When ` is large or the separation between s and t is large,
it is reasonable to expect that:

1

1− (1− p)
1
`

P̀
i=1

di

≈ 1

1− (1− p)d̄

Hence, when n is large, we obtain a better approximation
of the lower bound as:

Ls,t = E[L`] ≥
E[`]

1− (1− p)d̄
= L̃

(1)
s,t

2) We define the second approximation as:

L̃
(2)
s,t ,

 
nX
i=1

di
1− (1− p)di

! 
nX
k=2

1

1− λk

“v2
k,t

dt
− vk,svk,t√

dsdt

”!

We recall that the stationary distribution of a random
walk on a connected graph is given by π(i) = di

2m
[1, 9].

Suppose the random walks from s to t is close to reaching
the stationary distribution. Then, we obtain:

Ls,t ≈ Hs,t

nX
i=1

P{random walk hits i}
1− (1− p)di

= Hs,t

nX
i=1

π(i)

1− (1− p)di

= L̃
(2)
s,t

Corollary 3.

L̃
(2)
s,t ≥ L̃

(1)
s,t

Proof. This follows from the fact that function f(x) =
x

1−(1−p)x is convex and the application of Jensen’s inequal-

ity.

As we shall see in Section 6, both L̃
(1)
s,t and L̃

(2)
s,t appear

as relatively accurate approximations to Ls,t, in the simula-
tions with respect to random geometric graphs.

4. RANDOM GEOMETRIC GRAPHS
Random geometric graphs are widely-used for modeling

diverse wireless ad hoc networks, in which nodes are ran-
domly placed in a confined area, and communication links
are established between nodes that are within a pre-defined
transmission radius. In this section, we especially study the
hitting time of random walks on random geometric graphs.

We denote a random geometric graph as Ggeo(n, r), which
is an ensemble of n-node graph such that the position of each
vertex is independently uniformly distributed on a 2D unit
square area, and there is an edge between a pair of nodes
if they are within transmission radius r. First, we draw on
the following lemma from [3] (Lemma 10) that shows that
the degrees of a random geometric graph are concentrated
on the mean degree.

Lemma 4. Given a random geometric graph Ggeo(n, r),

such that r = Ω(
q

logn
n

). Then the degree of every node

i is

di = d̄(1 + o(1)) = nπr2(1 + o(1))

with high probability.

The following corollary confirms that L̃
(1)
s,t is a good ap-

proximation of Ls,t for large random geometric graphs.

Corollary 5. Given a random geometric graph Ggeo(n, r),

such that r = Ω(
q

logn
n

). Then,

Ls,t =
Hs,t

1− (1− p)nπr2(1+o(1))

with high probability.

Proof. This follows from Theorem 2 and Lemma 4.

5. R-NEAREST CYCLES
In this section, we derive an exact analytical formula of

the expected hitting time in a particular deterministic class
of regular network topology, called r-nearest cycle, which is
useful to some common sensor network deployment scenar-
ios.

Although Lovasz’s formula is very general, it is not straight-
forward to gain insights for specific classes of graphs useful
to the design of wireless networks. In general, the evalua-
tion of eigenvalues and eigenvectors of symmetrized transi-
tion matrix N is non-trivial. Nonetheless, we found that the
evaluation of eigenvalues and eigenvectors of N is straight-
forward for special regular topologies such as the r-nearest
cycle. Given a cycle of n nodes denoted as Cn, we construct
an r-nearest cycle (denoted as Crn) as the graph with edges
between nodes and their r-nearest left and r-nearest right
neighbors on Cn. Thus, the degree of each node i is di = 2r.

An r-nearest cycle can be regarded as one dimensional
projection of a geometric wireless network topology, where
nodes are connected when they are within some distance r.
Hence, the fundamental insights for r-nearest cycle will be
useful for understanding the two dimensional case in wireless
networking.

The symmetrized transition matrix N of an r-nearest cy-
cle is a circulant matrix [8], which consists of row entries as
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shifts of the next row entries. A circulant matrix is in form
of: 0BBBBB@

a1 a2 . . . an−1 an
an a1 . . . an−2 an−1

...
...

. . .
...

...
a3 a4 . . . a1 a2

a2 a3 . . . an a1

1CCCCCA
It is easy to diagonalize circulant matrices. Let ε be the

primitive n-root of 1. That is, ε is the complex number:

ε = cos
`

2π
n

´
+ i sin

`
2π
n

´
For 1 ≤ k ≤ n, define a number:

λk = a1 + a2ε
k−1 + · · ·+ anε

(n−1)(k−1) (4)

and a column vector:

vk =
1√
n

“
1, εk−1, ε2(k−1), ..., ε(n−1)(k−1)

”T
(5)

By substitution, we obtain:0BBBBB@
a1 a2 . . . an−1 an
an a1 . . . an−2 an−1

...
...

. . .
...

...
a3 a4 . . . a1 a2

a2 a3 . . . an a1

1CCCCCA

0BBBBB@
1

εk−1

ε2(k−1)

...

ε(n−1)(k−1)

1CCCCCA= λk

0BBBBB@
1

εk−1

ε2(k−1)

...

ε(n−1)(k−1)

1CCCCCA
Hence, λk and vk are the k-th eigenvalue and eigenvector of
a circulant matrix, and hence, can be used for substitution
in Eqn. (2).

For an r-nearest cycle Crn, the entry ai of symmetrized
transition matrix N is:

ai =


1
2r

if 2 ≤ i ≤ r + 1 or n− r + 1 ≤ i ≤ n
0 otherwise

Next, we substitute Eqns. (4)-(5) into Lovasz’s formula,
Eqn. (2), to evaluate the hitting time of random walk on Crn.
The k-th eigenvalue of symmetrized transition matrix N for
Crn by Eqn. (4) is:

λk = 1
2r

rP
j=1

cos
` 2πj(k−1)

n

´
+ i sin

` 2πj(k−1)
n

´
+ 1

2r

rP
j=1

cos
` 2π(n−j)(k−1)

n

´
+ i sin

` 2π(n−j)(k−1)
n

´
= 1

r

rP
j=1

cos
` 2πj(k−1)

n

´ (6)

Although λk is a real number, the entries of eigenvector in
Eqn. (5) are not always real numbers, and hence not useful
in evaluating Eqn. (2). However, when n is even, the first
entry of the k-th eigenvector in Eqn. (5) is vk,1 = 1√

n
, while

the (n
2

+ 1)-th entry is:

vk,n2 = 1√
n
ε(k−1)n2

= 1√
n

“
cos
` 2π(k−1)n2

n

´
+ i sin

` 2π(k−1)n2
n

´”
= 1√

n

“
cos((k−1)π) + i sin((k−1)π)

”
= (−1)(k−1)

√
n

(7)

Thus, vk,n2 is always a real number.

In fact, the first and the (n
2

+1)-th entries in an eigenvector
correspond to a pair of farthest apart nodes on Crn. It is
the maximum expected hitting time, which can serve as the
upper bound for other pairs of nodes.

Theorem 6. Given an r-nearest cycle Crn and n is even,
the maximum expected hitting time of random walk is:

H1,n2 +1 =

n−2
2X

k=0

4r

(2r + 1)− sin
`
π(2k+1)(2r+1)

n

´
sin
`
π(2k+1)

n

´ (8)

Proof. We remark that 2m = 2rn. By substitution of
Eqns. (6)-(7) into Eqn. (2), we obtain:

H1,n2 +1 = 2m

nX
k=2

1−(−1)(k−1)

2rn

1− 1
r

rP
j=1

cos
` 2πj(k−1)

n

´
=

n−2
2X

k=0

2

1− 1
r

rP
j=1

cos
“

2πj(2k+1)
n

”
=

n−2
2X

k=0

4r

(2r + 1)− sin
`
π(2k+1)(2r+1)

n

´
sin
`
π(2k+1)

n

´
where the last inequality follows from the identity:

1 + 2

rX
j=1

cos(jx) =
sin
`
r + 1

2

´
x

sin(x
2
)

Fig. 1(a) illustrates the trend of Eqn. (8) with respect to
different network size, n, whereas Fig. 1(b) illustrates the
same with respect to the number of nearest neighbors, r.
It is observed that the expected hitting time scales almost
quadratically with n, but is inversely proportional to r.

Increasing the number of nearest neighbors r in r-nearest
cycles is an analogue of increasing the transmission radius r
in random geometric graphs. Hence, an implication of our
result is that increasing the transmission radius in a wireless
network will roughly decrease the latency in inverse propor-
tion, while increasing the number of relay nodes in a wireless
network will roughly increase the latency quadratically.

We remark that there are no known results using the effec-
tive resistance and discrete Green’s function for computing
the hitting time in r-nearest cycles. Our result appears to
be an original contribution to this area.

6. SIMULATIONS AND EVALUATIONS
In this section, we present some representative simula-

tions results to show that the approximations L̃
(1)
s,t and L̃

(2)
s,t

are relatively accurate. We simulated random walks with
pseudo-random duty cycling on random geometric graphs
and large 2D lattices, and then compared those results with
the values obtained from the approximation formulas. Specif-
ically, we simulated a large number of random duty cycling
instances on each graph with different p and then measured
the average end-to-end latency.

First, we simulated duty cycling random walks on small
networks – for a 10 node random geometric graph with wake
up probability, p = 0.1, we found that the simulated value of
average end-to-end latency for all s, t pairs was 40.736 slots

(averaged over 1000 runs), while L̃
(1)
s,t = 39.54 slots.

We then considered larger networks – we simulated the
duty cycling random walk on a 100 node random geometric
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Figure 1: Expected hitting time for the farthest pair of nodes in r-nearest cycles (Eqn. 8) as a function of:
(a) network size n; (b) number of nearest neighbors r.

Figure 2: A Sparse random geometric graph.

graph shown in Fig. 2 (1500 independent simulation runs)
with wake up probability, p = 0.1. The diameter of this
graph is 22 hops and we chose the farthest pair of nodes as
source and target2. The average latency in simulations was

7892 slots, whereas L̃
(1)
s,t = 7770 slots. Hence, the approxi-

mation formula, L̃
(1)
s,t , is within 1.5% of deviation.

We also compared the simulation and analytical results
for average latency on a regular grid graph, a 10× 10 Man-
hattan 2D lattice (n = 100), and considered the path from
a node at one corner to the node at the opposite corner of
the lattice (the diameter is 18 hops). We ran 1000 random
simulations with p = 0.1. The average latency in simula-

tions was 1715 slots, whereas L̃
(1)
s,t = 1734 slots. Again the

approximation formula, L̃
(1)
s,t , is within 1.1% of deviation.

The latency histogram is shown in Fig. 3.
Finally, we studied the effect of pseudo-random duty cy-

cling on different values of p on a 100 node random geomet-

2Note that we chose to present the simulation results for the
farthest pair of nodes since it takes a long time to simulate
all possible (s, t) pairs in large networks.

Figure 3: Latency histogram for a 10×10 2D lattice.

Figure 5: Comparison between approximation for-
mulas and simulations of average end-to-end latency
suffered by duty cycling random walks between the
farthest pair of nodes on the 100 node graph shown
in Fig. 4 against different values of p.

ric graph shown in Fig. 4. The diameter of this graph is 14
hops. In the same figure we plot the four different per-hop

latency estimates. We observe that L̃
(1)
s,t and L̃

(2)
s,t are very

close to each other. We plotted the comparison of these two
estimates with the simulation results (averaged over 1500
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Figure 4: A random geometric graph with n = 100, r = 0.15, and p = 0.1; and the average per-hop latency
according to various bounds and approximation formulas: Min and Max curves are given by Equation 3; the

Mean curve is given by per-hop component of L̃
(1)
s,t and Stationary Distribution curve refers to the per-hop

component of L̃
(2)
s,t

.

runs) in Fig. 5 and we can observe that the approximations
are reasonably accurate. This is a significant win because
the execution of 1500 runs took several hours whereas the
latency approximations presented in this paper were com-
puted virtually instantaneously.

7. CONCLUSION
In this paper we presented an approach that combines op-

portunistic forwarding and duty cycling as a useful paradigm
in wireless sensor and ad hoc networks that have poor con-
nectivity and energy constraints. We presented accurate es-
timation formulas for the latency of opportunistic forward-
ing in wireless networks in the presence of duty cycling. Our
results are for finite-sized networks, which are practically
more useful than other asymptotic analyses in the litera-
ture. Designers and deployers of wireless sensor networks
who desire to exploit the tradeoffs between energy efficiency
and latency can put these results to good use. In this paper
we have not compared the performance of duty cycling ran-
dom walks with deterministic duty cycling techniques that
gather topology information and perform more intelligent
routing. Although the latter is likely to have better latency
performance, that can be outweighed by the other bene-
fits of using stateless random approaches, e.g. avoidance of
hot-spot formation and non-uniform energy depletion, and
fault-tolerance. Comparison with more intelligent duty cy-
cling approaches is a topic of ongoing research.
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9. APPENDIX
In this section, we formally show that the forwarding rules

due to pseudo-random duty cycling do not alter the resul-
tant transition probabilities, which are the same as those for
simple random walk on finite graphs. In other words, a duty
cycling random walk amounts to first selecting a neighbor
with equal probability and then waiting (while sleeping) for
the number of slots until that neighbor wakes up.

Theorem 7. In duty cycling random walk, the probabil-
ity of forwarding data from node i to any particular neighbor
is 1

d
, where d is the degree of node i.

Proof. Let X1, X2, . . . , Xd be i.i.d. random variables de-
noting waiting time (in slots) before neighborsN1, N2, . . . , Nd
wake up, respectively.

Let us denote the probability that data from node i is
forwarded to node N1 by P(i → N1). This is given by the
following expression:

P(i→ N1) = P(X1 < X2, X1 < X3, · · · , X1 < Xd)

+
1

2
P(X1 = X2, X1 < X3, · · · , X1 < Xd)

+
1

2
P(X1 < X2, X1 = X3, · · · , X1 < Xd)

+ · · ·

+
1

2
P(X1 < X2, X1 < X3, · · · , X1 = Xd)

+
1

3
P(X1 = X2 = X3, · · · , X1 < Xd)

+
1

3
P(X1 = X2 = X4, · · · , X1 < Xd)

+ · · ·

+
1

4
P(X1 = X2 = X3 = X4, · · · , X1 < Xd)

+ · · ·

+
1

d
P(X1 = X2 = X3 = · · · = Xd) (9)

The general term in the above series is:

1

k
P(X1 = Xπ2 = · · · = Xπk , X1 < Xπk+1 , · · · , X1 < Xπd)

where π denotes a permutation of the set {2, 3, 4, · · · , d}.
In particular, X1 is exactly equal to k − 1 other variables
{Xπ2 , Xπ2 , . . . , Xπk} and is strictly less than the other d−k
other variables {Xπk+1 , . . . , Xπd}. The multiplying factor

of 1
k

exists due to the fact that a k-way tie among simul-
taneously awake neighbors is broken randomly (uniformly).
Also note that there are exactly

`
d−1
k−1

´
terms of this type.

Note than if the tie-breaking procedure is biased more fa-
vorably towards certain nodes over others, the 1

k
term would

have to be replaced with a term that reflects this aforemen-
tioned bias. In that case the duty cycling random walk will
not be equivalent to a simple random walk but will be a
weighted version of it, instead. In that case, this formula-
tion can be appropriately modified to compute the resultant
transition probabilities which, in general, may no longer be
independent of the neighbor.

Now we calculate the value of this term as follows:

P(X1 = Xπ2 = · · · = Xπk , X1 < Xπk+1 , · · · , X1 < Xπd

=

∞X
s=1

P(X1 = s)P(Xπ2 = s) · · ·P(Xπk = s)×

P(Xπk+1 > s)P(Xπk+2 > s) · · ·P(Xπd > s)

=

∞X
s=1

((1− p)s−1p)k × ((1− p)s)d−k

= (
p

1− p )k
∞X
s=1

(1− p)ds

= (
p

1− p )k
(1− p)d

1− (1− p)d

=
pk(1− p)d−k

1− (1− p)d (10)

We use the following in the above calculation:

P(Xj = s) = (1− p)s−1p

P(Xj > s) =

∞X
i=s+1

P(Xj = i)

=

∞X
i=s+1

(1− p)i−1p = (1− p)s

From Eqns. (9)-(10) we have

P(i→ N1) =

dX
k=1

1

k

 
d− 1

k − 1

!
pk(1− p)d−k

1− (1− p)d

=
(1− p)d

1− (1− p)d
dX
k=1

1

k

 
d− 1

k − 1

!
(

p

1− p )k(11)

Now consider the following expression:

dX
k=1

1

k

 
d− 1

k − 1

!
xk =

1

d

dX
k=1

 
d

k

!
xk

=
1

d
(
dX
k=0

 
d

k

!
xk − 1)

=
1

d
((1 + x)d − 1) (12)

Using identity (12) on Eqn. (11), we get:

P(i→ N1) =
1

d
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