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ABSTRACT
We approach the problem of handling storage congestion at
store-and-forward (DTN) nodes by migrating stored data
to neighbors. The proposed solution includes a set of algo-
rithms to determine which messages should be migrated to
which neighbors and when. It also includes an extension to
the DTN custody transfer mechanism enabling a “pull” form
of custody transfer where a custodian may request custody
of a message from another custodian. This approach allows
us to decouple the problem of storage allocation among a
relatively proximal group of storage nodes from the overall
problem of path selection across a larger network. Doing
so admits the possibility of localized routing loops for some
messages which has been shown to be desirable for avoid-
ing some head-of-line blocking problems. We select eligible
storage neighbors using a function of available storage and
incident link characteristics. Using simulation, we evaluate
this approach and show how migrating custodian storage
in this fashion can improve message completion rate by as
much as 48% for some storage-constrained DTN networks.
Categories and Subject Descriptors:

C.2.2: Routing Protocols
General Terms: Algorithms, Performance, Theory
Keywords: Routing, Delay Tolerant Network

1. INTRODUCTION
The Delay Tolerant Networking architecture (DTN) [5]

supports a custody transfer concept implemented by an ac-
knowledged transfer of data to persistent, reliable storage.
A node “taking custody” of a message makes a commit-
ment to deliver the message to its destination or another
custodian node, effectively migrating one or both of the
ends described in the end-to-end argument [12] to new loca-
tions. The goal of custody transfer is to use hop-by-hop
(custodian-to-custodian) reliability to improve end-to-end
reliability and to free retransmission buffers at a sender as
soon as possible. To implement this facility, the node tak-
ing custody (“custodian”) must generally reserve storage for
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messages it takes custody of, resulting in a reduced amount
of storage remaining for either taking custody of subsequent
messages or for merely doing its ordinary task of switching
messages.

When faced with persistent demand, a custodian unable
to release or otherwise transfer custody of its messages will
ultimately exhaust its storage resources– a form of DTN con-
gestion. This type of congestion can easily result in head-
of-line blocking, preventing further traffic from flowing even
when some outgoing connections are available [6]. Easing
congestion at a custodian is a nontrivial task. The options
include discarding messages, moving them toward their ul-
timate destination (typically the most desirable case), or
moving them to some other place. The potential of long
delays and interruptions of custody transfer operations be-
tween custodians makes the management of message migra-
tion to combat congestion especially difficult.

If complete knowledge of the network evolution is known
in advance (traffic mix, buffer state, topology dynamics),
a linear program (LP) can be used to compute an opti-
mal schedule of transmissions that avoids the congestion
by never oversubscribing available buffers or links [1]. In-
terestingly, this approach sometimes provides optimal rout-
ing/transmission schedules including loops. These loops can
avoid head-of-line blocking problems by moving data away
from congested nodes and possibly back again once the con-
gestion is less severe. Unfortunately, this approach is too
computationally heavyweight to be practical. Instead, DTN
route selection based on more conventional routing algo-
rithms that avoid loops [9] has been suggested.

While some of these loop-free approaches take buffer oc-
cupancy into account when making path selection decisions,
they do nothing to beneficially move existing data buffered
in the network to alternative storage locations that may be
further from the destination without the aid of an oracle. Of
course, in practical networks, oracles are not normally avail-
able, and the computational complexity of executing an LP
for scheduling on even moderate sized networks is not realis-
tically viable. Nevertheless, performance can suffer severely
if an algorithm is selected that is unable to moderate con-
gestion. As a consequence, we have a limited set of options:
use a non-optimal global heuristic to attack the LP formula-
tion for the whole topology, separate the buffer management
mechanism from the route selection problem, or decompose
the problem into separate routing domains where loops may
be permitted among only a subset of the nodes. In this pa-
per, we approach the problem using the last two options,
leaving the first option for future work.
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2. MESSAGE MIGRATION
When a DTN custodian node becomes congested, it must

generally migrate its stored messages to alternative storage
locations to avoid loss. If the alternative storage locations
for messages are closer to the messages’ ultimate destina-
tions, it is usually preferable to migrate messages further
along their conventional routing path using existing DTN
custody transfer procedures. If, however, moving messages
along this path will not ease congestion (or simply is not
possible at some instant of time), migrations to more dis-
tant locations may still be important to avoid message loss,
requiring the development of some form of message migra-
tion.

2.1 Layering Selection
A message migration facility for DTN custodian conges-

tion could be implemented either using DTN-layer mecha-
nisms, or by hiding the storage subsystem from the DTN
layer and instead employing a separate distributed storage
system. In cases where the potential storage nodes are rela-
tively well interconnected, the distributed system approach
may be simpler. A DTN custodian simply accepts custody
for messages, stores them in the storage system while main-
taining custody, and retrieves the messages at appropriate
times when they must be forwarded or otherwise processed.
If the storage system is intelligent with respect to load bal-
ancing and caching, the custodian need only keep track of
where stored messages have been placed and retrieve them
later.

The major problem with this approach is the potential
for inconsistency should a custodian be unable to access its
distributed storage system. In such a circumstance, the cus-
todian may be able to begin a custody transfer with another
custodian but be unable to complete. Other operations are
similarly affected. This approach is, in effect, a violation
of Clark’s fate sharing argument from [3]. This argument
would suggest the custodian of a message should be co-
located with the message itself— that is, their fate should
be shared.

Given the potential problems with the migration approach
discussed so far, we turn to the idea that the migration facil-
ity be visible to the DTN layer. In other words, custody of
a messages and the message itself travel together, and DTN
protocol mechanisms such as custody transfer requests and
acknowledgments (CACKs) are employed to effect the mi-
gration. DTN routing is used in most circumstances unless
a loop is desired. In these cases a new “pull custody” oper-
ation is constructed to retrieve messages from other custo-
dians, generally creating small-distance loops. We call the
approach Push-Pull Custody Transfer.

2.2 Push-Pull Custody Transfer
Migrating of messages among and between custodians can

be initiated by either a sender or by a requesting receiver.
The current DTN custody transfer model [11] is sender based,
such that all decisions about initiating custody transfer are
push operations. While this approach is likely to be ade-
quate for DTNs employing only loop-free routes, it is not
sufficiently flexible for supporting short-term loops in rout-
ing paths that do not disturb an otherwise-loop-free routing
protocol. In particular, although an operational loop-free
DTN routing solution could be locally adjusted in the vicin-
ity of a congested custodian to effect message migration, this

approach would require extreme attention to detail in how
routing would be locally adjusted in order to prevent global
routing algorithm instability.

To avoid many of the pitfalls of locally modifying a global
routing algorithm, we instead extend the custody transfer
mechanism with a novel pull operation. In this form of cus-
tody transfer, a node with available resources can request to
receive custody of messages from other nodes by means of a
new custody request protocol operation without disrupting
the global routing system.

In providing both push and pull operations for initiating
custody transfer (together called push-pull custody transfer),
we are able to locally circumvent global DTN path selection
to improve congestion control. Push-pull custody transfer
operates at the DTN layer, so DTN custody transfer mecha-
nisms are available to implement the transfers. In addition,
we can limit the topological scope of nodes that are con-
cerned with buffer storage management to those nodes prox-
imal to congested custodians. To take advantage of push-
pull custody transfers, a congested custodian must make
decisions about when to invoke push or pull operations to
satisfy its data routing and congestion goals. This involves
a set of algorithms we call Storage Routing (SR).

2.3 Joint Custody and Migration
Migration may occur after a message has been forwarded

to the next hop custodian but before an acknowledgment is
received from the next hop custodian. Since the fate shar-
ing argument requires a message and its custodian to be co-
located, this type of migration creates multiple custodians
for the same message, which is referred to as joint custody
in [6]. Joint custody allows more than one custodian for
a given message. In this situation, migration causes mes-
sage duplication that must be resolved at another custodian
receiving both messages or the destination.

3. STORAGE ROUTING
Storage Routing (SR) is a set of algorithms invoked by a

DTN custodian when congestion becomes evident and when
it abates. With the onset of congestion, the algorithms pro-
vide a selection of messages to migrate and a set of alter-
native custodian(s) to which the selected messages are to
be migrated. The custodian then invokes the conventional
DTN custody transfer mechanism [13] to transfer the se-
lected messages to alternative storage locations using the
push operation. When a custodian has sufficient storage re-
sources to take custody for messages, it invokes a retrieval
algorithm to migrate, or pull, messages for which it may
have had custody earlier toward their destination(s). In
summary, the algorithms comprising SR include the follow-
ing:

1. message selection - selects which messages to migrate
to storage nodes

2. node selection - produces a set of nodes where messages
should be migrated to

3. retrieval selection - selects which messages to retrieve
(take custody for) and from whom

We now discuss further details influencing the design of
each algorithm.
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3.1 Message Selection
The choice of message(s) to migrate using the push cus-

tody transfer operation (also called the push policy) is anal-
ogous to the choice of a packet to drop (or mark in the case
of active queue management approach such as RED gate-
ways [7]) when an IP router exhausts its internal queues.
Generally, either an arriving or a stored message may be
selected. Push policies can be categorized by the types of
factors they use to select messages. Three selection factor
types considered are temporal, size, and priority.

A temporal policy selects a message to be pushed based on
time. Example of such policies are pushTail (most recent ar-
rival), pushHead (least recent arrival), pushOldestNetwork-
Age, where network age may be defined as time-to-live or a
real-time timestamp, and pushLatestRouteAvailability, which
pushes messages that utilize routes that will become avail-
able furthest in the future. A size policy selects a message
to be pushed based on the size of the messages. Exam-
ples of such policies are pushSmallest and pushLargest. A
priority policy selects a message to be pushed based on pri-
ority level. An example of this policy is pushLowestPriority.
These examples are shown in Table 1 and do not represent
a comprehensive set of options.

Push policies are important because they dictate the op-
tions a custodian has for handling congestion. A DTN cus-
todian will vigorously attempt to avoid discarding any mes-
sages or fragments for which it has taken custody, as doing
so would imply the likely total loss of the corresponding mes-
sage. Although the DTN architecture suggests the idea that
when a custodian becomes congested it may cease accepting
custody for subsequent messages (a form of flow control), we
do not pursue this particular approach further in this work
because we are primarily interested in networks containing
traffic sources which themselves cannot be flow controlled
due to continuous generation of application data (e.g., sen-
sor networks).

For sources which continuously produce data, flow con-
trol would only cause loss or additional delay for data being
forwarded through the network. Instead, we focus on miti-
gating storage-based congestion using underutilized storage
resources found off the selected routing path(s). In some
sense, our approach could be characterized as a form of con-
gestion management implemented using distributed storage
load balancing.

The push policy selects a message currently in storage or
the newly arrived message to be pushed. It is similar to a
drop policy in that the policy selects a particular message, or
packet, that must be removed from storage but is different
in terms of the action taken. In a push policy, it is possible
to delete messages, but this action is selected as a last resort,
only when there is no available storage at any neighboring
node.

3.2 Node Selection
Any custodian node taking custody of a message is re-

quired to store the message until it receives a custody ac-
knowledgment (CACK) from another custodian node or the
node itself is the destination. Once a message selection algo-
rithm has been invoked to select one or more messages for
migration, alternative custodians (“targets”) for the mes-
sages must also be selected. We are usually interested in se-
lecting targets among nodes that are near to the congested
custodian in the topological (hop count) sense. Although

other metrics are possible, this is the simplest to begin our
discussion.

For static graphs G = (V, E), we define the
k−neighborhood Nv(k) a node v as the set of nodes within
minimum distance k hops of v. More precisely: Nv(k) =
{w|d(v, w) ≤ k, w ∈ V } where d(x, y) is the smallest number
of hops among all paths x → y. For DTN graphs, where
edges come and go, we consider an edge ei,j to be in E if ever
there exists a link between i and j with capacity greater than
zero. The value k is also called the hop radius; it alone does
not fully reflect the cost involved in migrating a message
to from a custodian to its k neighborhood. Obviously, it is
possible for a node in Nv(2), for example, to have a lower
migration cost than some other node in Nv(1), especially for
DTNs with highly diverse and intermittent links.

The node selection algorithm we pursue determines which
nodes are good candidate targets based on an aggregate mi-
gration cost metric. This metric is sensitive to the following
network parameters:

Storage Cost : The amount of available storage used
for accepting migrated messages. As in Zebranet [10], each
node decides how much of its own storage to make available
for storing other nodes’ messages.

Transmission Cost : A sum based on the constituent
costs of transferring messages from the present custodian to
one or more alternative custodians. This value is dependent
on the latency, bandwidth, and up/down schedules of the
links along the path from the current custodian to the target
set.

Migration cost, Cc,v(l), from custodian node, c, to a k-
neighborhood node, v, of the selected message with length,
l, is the weighted summation of the normalized storage cost,
Sv(l), and normalized transmission cost, Tc,v(l). The mini-
mum value for Cc,v(l) is 0 and the maximum value is 1.

Cc,v(l) = Tc,v(l)ωT + Sv(l)ωS

The transmission cost is a function of the latency, Lc,v, on
the path c → v, bandwidth, Bc,v, on the path node c → v,
and the message length, l. It is defined as follows:

Tc,v(l) = log((Lc,v + (l ÷ Bc,v)) ÷ (10−6)) ÷ 10

In this equation, Bc,v is the minimum bandwidth on the
path from node c to node v, and Lc,v is the total latency
on the path from node c to node v. For normalization, a
value of 1µsec as the minimal transmission cost and a value
of 1000 sec as the maximum transmission cost is used. All
normalized transmission costs lower than 1µsec are 0, and all
normalized transmission costs greater than 1000 sec are 1.
If no path exists between node c and node v, the normalized
transmission cost is infinite. A logarithm base 10 is used in
this equation to highlight differences in order of magnitude
rather than small deviations in nominal values.

The storage cost is a function of the available storage for
migration at node v. For normalization, the storage cost
is a ratio of the available storage, Av, and maximum node
storage, Maxv. The normalized storage cost, Sv(l) is shown
below.

Sv(l) =

j
Av ÷ Maxv for l ≤ Av

+∞ for l > Av

The weights, ωT and ωS, are selected based on the DTN
application and must sum to 1. When ωT > 0.5, migration
is based more on transmission cost than storage cost. This
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PolicyName PolicyDescription PolicyUsage
pushTail Selects the most recent arriving

message
Used in applications where keeping messages together
and in order is important such as serialized data
streams (e.g., voice or video)

pushHead Selects the least recently arriving
message

Used in applications where locally newer data is more
important than older data such as highly refreshed
data (e.g., caching applications)

pushOldestNetworkAge Selects the message with the highest
network age

Used in applications where globally newer data is pre-
ferred over older data such as highly refreshed data
(e.g., web browsing applications)

pushLatestRouteAvailability Used with scheduled intermittent
links to select the message that will
be waiting for an available route for
the longest period of time from now

Used in applications where link resource management
is important such as satellite applications

pushSmallest Selects the message with the small-
est size

Used in data or file transfers applications where large
files are more important such as in scientific data col-
lection

pushLargest Selects the message with the largest
size

Used in interactive applications where small messages
are more important (e.g., text messages, chat, or re-
mote login)

pushLowestPriority Selects the message with the lowest
priority

Used when high-priority data is more important to
deliver than low-priority data

Table 1: Push Policy Description and Usage

value prefers a migration node with less available storage
that is closer to the custodian node rather than a migra-
tion node with more available storage that is further. The
opposite is true when ωS > 0.5

To find targets, a form of expanding ring search (ERS) [2]
may be employed from a current custodian c. Starting with
k = 1, a value of Cc,v is computed for each v ∈ Nc(k)
according to the formula given above. The minimum cost
among all nodes within radius k is formed as Cmin(k) =
minv∈Nc(k) Cc,v The target node set comprises all nodes with
minimum cost: T = {v|Cc,v = Cmin}. If this set is of
cardinality greater than one, ties are broken by lexical order
of the node ID.

3.3 Message Retrieval
The message retrieval algorithm determines which mes-

sage is selected for migration to a custodian using a custody
pull operation initiated by the custodian. In relatively sim-
ple topologies, this may be a custodian retrieving a message
back it has temporarily stored in an adjacent alternative
custodian.

A custodian may send a custody request when it tran-
sitions from a state of high congestion to low congestion.
This is similar in spirit to a form of routing advertisement,
but for reasons discussed earlier does not affect the DTN
routing state. The custody request message may be sent
to either a single custodian (e.g. when the sender knows
the location of messages it previously migrated) or might
instead use a form of group query to find other nearby cus-
todians with messages to migrate. The decision of which
messages to migrate at this point mirror the push decision
described earlier, except in this case the decision is made by
the receiver rather than the sender.

4. SIMULATION SETUP
To study the potential benefits of Storage Routing, we

implemented a simple version of each of the message selec-

tion and retrieval algorithms along with the node selection
algorithm described earlier. The message selection policy is
pushTail and the node selection algorithm uses the proce-
dure described in section 3.2. The message retrieval algo-
rithm selects a message from all sufficiently small messages
available in Nc(1). Using simulation on a topology con-
structed to illustrate the behavior of SR, we evaluate the
relationship between storage, link intermittency, and their
effect on message completion rate (MCR). For purposes of
evaluation, we make several assumptions about the network
that apply to all simulations:

• No separate flow control mechanisms are in use - sources
are unregulated and transmit at any time

• Nodes must take custody when forwarding messages
- Nodes may refuse to take custody, but never accept
data for forwarding without also accepting custody

• Custodian nodes drop as a last resort - data is only
dropped when no other migration options are available

• Nodes are symmetric with respect to storage - each has
a storage capacity made available to hold either their
own or others’ messages

• Each link has the same bandwidth in both directions

• Each link is either “up” or “down” – whenever a link
is up, its capacity is fixed

4.1 The Simulator
A publicly-available simulation package was considered for

DTN simulation, namely dtnsim [4]. Dtnsim contained a
only a small subset of DTN mechanisms and in particular
is missing custody transfer. Therefore, a custom simula-
tion environment was developed based on the generic YAC-
SIM [14] discrete event simulation engine and augmented
with custom simulation software supporting intermittent
links, custody transfer, and the other DTN mechanisms.
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4.2 Network Topology
Figure 1 indicates a projection of the (dynamic) network

topology used to obtain the simulation results. An edge ei,j

is included in the topology graph if there ever exists in an
interval of time during the simulation when an edge incident
to i and j has strictly positive capacity. Using this approach,
the topology includes 18 nodes, with a set of well-connected
“core nodes” having average node degree 4.125. It also in-
cludes many degree-1 leaf nodes. A significant number of
high degree nodes in the network core allows our simula-
tions to realize the effect of cross-traffic while the presence
of low degree nodes at the periphery supports exploration
of end-user performance.
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Figure 1: Network Topology

This topology contains a fixed schedule of intermittent
links, where each intermittent link has a duty cycle of 0.25
(25% uptime and 75% downtime). Each link in the topology
has a bandwidth of 10 kbps and a latency of 1 ms. At sim-
ulation time t = 0, all links in the network topology are up.
The intermittent link schedule is shown in Table 2. Inter-
mittent links were selected to affect a significant percentage
of network traffic; therefore, several links connecting rela-
tively high-betweenness nodes (core nodes in this case) were
selected as opposed to links connected to leaves that only
carry a small percentage of the overall network traffic. 75%
of the intermittent links connect two core nodes together.
The link intermittency schedule is arranged such that at
some points in time the graph is partitioned.

IntermittentLink Uptime(s) Downtime(s)
(1,4) 17.0 51.0
(2,5) 13.0 39.0
(3,6) 57.0 171.0
(6,18) 38.0 114.0
(6,15) 7.0 21.0
(1,7) 12.5 37.5
(5,12) 47.0 141.0
(2,18) 4.5 13.5

Table 2: Intermittent Link Schedule

In addition to the nominal uptime and downtime, it is in-
teresting to note the aggregate number of intermittent links
down and up as a function of time. This information is

somewhat difficult to ascertain by studying the intermittent
link schedule, so we present a time series in Figure 2. The
graph shows the number of intermittent links at any given
time assuming all links listed in Table 2 are used. This graph
shows how the number of down links oscillates between 4 and
8 during steady-state operation.
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Figure 2: Number of Down Links in Time

4.3 Network Traffic
Traffic sources are modeled as periodic on/off sources with

two parameters: off time and on time, where the off time and
on time are fixed for each traffic source. The burst rate is
fixed for a single but different among traffic sources. Given
a fixed off time, a short on time reduces the traffic inten-
sity, which tends to allow the network to continue operating
without loss despite a number of links being down (ie., be-
cause previous bursts are buffered). Longer on times tend
to stress the network, and over time will produce congestion
and eventual loss. The burst length can be derived from the
on time and nominal link bandwidth, and is expressed in
terms of a number of fixed-sized messages.

The input parameters jointly affect the overall perfor-
mance as they together determine both the instantaneous
and average traffic intensity. Traffic arriving at the begin-
ning of a link downtime requires node storage for the dura-
tion of the downtime, assuming no other path to the des-
tination becomes available. Conversely, traffic arriving at
the beginning of an uptime has a high probability of ar-
riving at the next hop node right away, assuming that the
transmission time is negligible in comparison to the uptime
of the link. The strong joint sensitivity to delay between
bursts, burst length, and intermittent link schedule requires
careful consideration of these parameters when evaluating
performance.

The specific traffic model selected for simulation contains
a fixed off time of 5 seconds for each traffic source. In addi-
tion, each traffic source transmits 1000 byte messages. All
other details, which are variable based on each traffic source,
are shown in Table 3. The network traffic was run for 200.0
seconds for each simulation run to produce results discussed
in the next section.
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Src Dest StartT ime(sec) Uptime(ms) DataRateDuringBurst(KB/s)
5 8 0.1 750.0 2000
3 18 0.3 105.0 1666
14 9 0.5 175.0 2000
13 1 0.7 420.0 1666
9 13 1.1 900.0 1666
13 10 1.3 87.5 2000
6 3 1.5 210 1666
4 1 1.7 750 2000

Table 3: Traffic Source Information

5. SIMULATION RESULTS
To evaluate the efficacy of SR, we calculate the Message

Completion Rate (MCR) of the network traffic. The MCR
compares the amount of traffic sent into the network with
the amount of unique traffic that emerges from the network:

MCR =
AggregateReceivedData

AggregateSentData

We study the sensitivity of MCR as a function of node
storage and link intermittency level as independent vari-
ables. For each simulation, we compare MCR results for
three SR variations: no SR, SR with k = 1, and SR with
k = 2. Our goal is to determine whether SR is sufficiently
compelling to pursue further, and if so whether the hop ra-
dius distance has a strong influence on its performance.

5.1 Node Storage
The amount of storage at each node in a congested DTN

has a strong effect on the MCR of network. With increasing
link downtimes, larger amounts of storage are required to
cope with intermittent links while avoiding loss. For our
node storage simulation results, we configure four links to be
intermittent, which are the first four links listed in table 2
and let node storage range from 32 KB to 2048 KB. The
results are shown in Figure 3. With 32KB of storage, SR
with k = 1 shows a 39% improvement and with k = 2, a
48% improvement in MCR over similar circumstances when
SR is not in use.

There are two other points of interest on the graph. When
the node storage reaches 1000 KB, there is no further dif-
ference between SR with k = 1 versus k = 2. When node
storage is 2048 KB, it is no longer a limiting factor on the
value of MCR, implying the network is no longer congested
(in which case SR offers no benefit).

The largest burst of network traffic introduced to this sim-
ulated network is 1500 messages. Since each message 1 KB
in size, the largest burst from one source entering the net-
work is 1500 KB. Given one traffic source, the maximum
amount of storage necessary at a given next hop node to
store all messages is 1500 KB, and it could be expected this
is the maximum node storage necessary to alleviate all drops
due to lack of storage. As the results for 1500 KB show, this
is not the case due to cross-traffic from other traffic sources.
Competition exists for next hop storage between all traffic
sources traversing the node.

5.2 Intermittent Links
The number of intermittent links (and their respective up

and down times) can have a large impact on the ability of
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a DTN to deliver messages. To explore the effect of link
intermittency on MCR, we fix each node storage at 1MB
and vary the number of intermittent links between zero and
8 by making links intermittent according to the order and
parameters of Table 2. Results are shown in Figure 4.

Intermittent links were introduced one-by-one in each sub-
sequent simulation run in the order in which they are listed
in the table. For example, the first simulation run contained
no intermittent links. The second simulation run contained
(1,4) as the only intermittent link. The third simulation run
contained (1,4) and (2,5) as intermittent links and so on. A
total of 9 simulation runs were necessary to produce a set
of results for each configuration (no SR, SR with k=1, SR
with k=2). The results show that increasing the number
of intermittent links either decreases the MCR or holds the
MCR constant.

From 0 to 3 intermittent links, there is no difference in
MCR between using SR with k = 1 or k = 2 and only a
10% difference from using no SR at all. With 4 intermittent
links, all such differences become more pronounced. When
the number of links is between 4 and 7, the difference in
MCR increases by approximately 5% when going from no
SR to SR/k = 1 to SR/k = 2. This result is moderate
yet significant because, as previously shown in Figure 2, the
number of intermittent links is between 4 and 7 for over 85%
of the time.

When the 8th link becomes intermittent, the MCR severely
decreases. At this point, the MCR not only significantly
drops due to partitioning, but the MCR for the three cases
studied nearly merge because none of them can make signif-
icant forward progress. When the network becomes parti-
tioned, in addition to the severe decline in MCR, SR begins
to oscillate, an effect not shown in the graph. The oscil-
lation is a consequence of SR searching for alternate stor-
age locations but routing being unable to carry messages to
their destinations. We can expect SR to ultimately fill ev-
ery potential custodian in one connected component of the
topology graph until message discarding is required (or the
partition heals). A subject for future research is to study
this phenomenon in more detail and to develop a solution
to mitigate its negative effects.

Results for the intermittent link simulations differ from
those of the storage simulations due to the presence of the
sharp MCR threshold for intermittent links. This is because
the effect of a link becoming intermittent has a dependency
on several other factors. The number of core network inter-
mittent links introduced matters because alternative paths
to the same destination or nearby node storage may be dif-
ferent. For example, if the order had been different and all
core network intermittent links had been introduced first,
the network topology would have partitioned into two sub-
graphs earlier in the simulation causing the large drop in
MCR to occurs at number of intermittent links equals 6
(there are 6 core network links on the intermittent link
schedule) instead of 8.

A link transitioning from up to down may have no effect on
the MCR in cases where no traffic was using the link during
its down period. This is shown in the graph by comparing
MCR data points when the number of intermittent links is
4, 5, 6, and 7. Conversely, the graph also shows that an
intermittent link may have a drastic effect on the MCR as
well which is shown by comparing the MCR at number of
intermittent links equals 7 and 8.

6. FUTURE WORK
The concepts introduced in this paper begin to develop the

framework for addressing DTN congestion without interfer-
ing with global routing. We also introduce the symmetric
push-pull custody transfer that provides a wider range of
options to mitigate congestion. We now consider some vari-
ations on our work to date that may be fruitful avenues to
explore.

Message migration may not need to involve transferring
entire messages among custodians. The DTN architecture[13]
supports a proactive fragmentation mechanism that can di-
vide a message into smaller fragments, each of which can
be handled by custodians individually. Proactive fragmen-
tation was originally designed to take advantage of multiple
available paths towards the same destination, but in this
case it can be used to take advantage of multiple buffers of
available storage to store one message. Techniques such as
erasure coding, as explored in [8] for dealing with path loss,
may also be applicable for encoding fragments across mul-
tiple custodians. Supporting this efficiently would require
modifications to the message and node selection algorithms.

In this paper, we have not considered message priority as
input to the message, node, and retrieval algorithms. In
many circumstances, messages with a higher priority would
be preferentially selected for transmission before being pushed
to more distant storage. Modification of SR to support this
capability should be straightforward, but may cause difficul-
ties when large messages of high priority need to be handled
in a highly resource-constrained network.

As mentioned earlier in this paper, we have chosen to per-
form message migration independently from path selection.
Although joining these two functions is challenging, doing
so may result in a more stable global network (fewer control
loops). In particular, doing so may allow some alternative
custodians to be identified that have better routes to the
destination of messages.

During our exploration of the behavior of SR, we found
that when the network is partitioned, our simple implemen-
tation can begin to operate in an oscillatory fashion where
messages are moved among custodians but little forward
progress of messages is made. There are numerous tech-
niques for avoiding such forms of oscillations in routing pro-
tocols (hold times, split horizon, etc). To what extent these
techniques or others could be employed to address the oscil-
lation issue remains to be explored.

Our description of the push-pull custody model involves
identifying messages largely by identifier. It would be possi-
ble to construct a more general and capable matching func-
tion supporting the ability to express a custody request con-
taining a form of content-based query. Such a system is a
form of publish/subscribe, and custodians could be modified
to act not only as intermediate destinations for messages but
also as long-term repositories where other DTN nodes could
visit to obtain messages matching certain criteria. Such a
capability could be especially useful for content distribution
where significant temporal locality is present.

7. CONCLUSION
Storage congestion in DTN represents a significant design

challenge for several reasons. Lack of reliable, timely feed-
back regarding the state of the network makes traditional
techniques like rate based and window based congestion con-
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trol nearly ineffective. In addition, the reliability model of
custody transfer, where a custodian essentially promises not
to discard data for which it has taken custody, leaves few
options for a congested custodian to remedy its situation.
While a global DTN routing protocol could be modified to
take storage into account, doing so may disturb desirable
stability properties of routing protocols such a loop-free op-
eration. As a consequence, we have developed an approach
to congestion control that can be decoupled from path se-
lection decisions.

Although DTN nodes may be constructed with large
amounts of persistent storage, many DTN applications are
likely to employ nodes that are constrained in one or more
of its parameters (power, storage, etc) such as sensors or
small embedded systems. With networks of such devices in
mind, we introduce Storage Routing (SR) to employ avail-
able storage in neighborhoods of congested custodians to
mitigate blocking due to storage exhaustion without directly
affecting route selection. In support SR, a push-pull custody
transfer model is introduced to support the initiation of mes-
sage migration from either a sending or receiving custodian.
This mechanism allows custodian nodes with limited stor-
age to push messages to other custodian nodes for storage
when deemed necessary to avoid message loss. It also al-
lows custodians with available storage to request custody of
messages from other, more congested, custodians.

In evaluating whether SR is a promising approach to DTN
congestion, we measured the influence of node storage and
number of intermittent links on the Message Completion
Rate (MCR) using simulation. It most cases, use of SR im-
proves over its non-use, in some cases significantly, especially
when the amount of node storage is limited in comparison
to the network traffic volume. Also, we find SR provides
benefits when the number of intermittent links is moderate
but may not provide a significant benefit when the network
is frequently partitioned, although more investigation of this
topic would be appropriate.

Although we find SR is capable of providing significant
benefits in terms of MCR, we also observed that the de-
gree of benefit can vary significantly depending not only on
the amount of link intermittency but also on the particular
order and combination of intermittent links. Despite these
concerns, we believe SR can be an effective technique for
many DTN application scenarios, is relatively easy to im-
plement, and avoids the concerns related to modification of
a global routing protocol.
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